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Abstract: This study explores the Application of a Feedforward Neural Network (FFNN) for Day-
Ahead Photovoltaic (PV) Power Output Forecasting in Maiduguri Metropolis, a city located in 
north-eastern Nigeria. Accurate forecasting of PV power output is crucial for efficient integration 
of solar energy into the electricity grid and optimal energy management. The FFNN model was 
trained using historical meteorological and PV power generation data collected in Maiduguri. The 
input variables include temperature, wind speed, humidity, cloud cover, hour of the day, day of 
the year and previous PV power outputs. The model was designed to predict the PV power output 
for the day ahead. To evaluate the performance of the FFNN model, various statistical metrics, 
such as mean absolute percentage error (MAPE) and correlation coefficient (R), are utilized. The 
model's ability to capture the complex nonlinear relationships between the input variables and the 
PV power output was assessed. The results demonstrate that the FFNN model is capable of 
accurately forecasting the day-ahead PV power output in Maiduguri. The obtained MAPE of 
8.9093 and R values of 0.7632 by FFNN and MAPE of 15.0048 and R value of 0.3533 by ANFIS 
which is a validation tool, had indicated that the FFNN suitability in capturing the underlying 
patterns and dynamics of the PV system. The findings of this research contribute to the 
advancement of PV power forecasting techniques, using Maiduguri as case study. The FFNN 
model's demonstrated accuracy and reliability make it a valuable tool for decision-making 
processes related to renewable energy management, grid stability, and energy market operations.  

Keywords: Feed Forward Neural Network (FFNN), APE (Absolute Percentage Error), MAPE 
(Mean Absolute Percentage error). 
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1. INTRODUCTION 

Recent years have witnessed a growing emphasis on renewable energy technology as a 
result of the global search for ecologically friendly and sustainable energy sources. 
(Rekioua & Matagne, 2012). Among these, solar photovoltaic (PV) systems have 
emerged as a pivotal solution to harnessing clean energy from the sun. The abundant 
availability of sunlight in various regions presents a remarkable opportunity to generate 
electricity without the associated greenhouse gas emissions and depletion of finite fossil 
fuel resources. The city of Maiduguri, located in the northeastern region of Nigeria, is one 
such area with substantial solar energy potential. As urbanization and energy demands 
continue to rise, the integration of photovoltaic power into the energy mix becomes 
increasingly vital for a sustainable future. 

However, the inherent intermittency and variability of solar power production due to 
changing weather conditions pose challenges to the seamless integration of photovoltaic 
systems into the electricity grid (Namor, Sossan, Cherkaoui, & Paolone, 2018). These 
challenges highlight the critical importance of accurate forecasting models that can 
predict solar power output with precision (Conte, Massucco, Saviozzi, & Silvestro, 2017). 
Accurate forecasts empower energy system operators, policymakers, and stakeholders 
to effectively plan and manage the integration of solar energy (Van der Meer, Mouli, Mouli, 
Elizondo, & Bauer, 2016), ensuring grid stability, efficient energy distribution, and optimal 
resource allocation. 

In this context, the present study endeavors to address the need for reliable solar power 
output forecasting in Maiduguri by employing advanced artificial intelligence techniques. 
Specifically, the study focuses on utilizing Feedforward Neural Networks (FFNN), a type 
of artificial neural network, to develop an accurate forecasting model. Neural networks 
have demonstrated remarkable capabilities in modeling complex and nonlinear 
relationships within datasets, making them well-suited for predicting photovoltaic power 
output based on a multitude of influencing factors. 

By looking at data on past solar energy production along with pertinent climatic factors 
including temperature, wind speed, cloud cover, and relative humidity. This research aims 
to construct a robust FFNN model that can provide accurate short-term forecasting of PV 
power output in Maiduguri. The successful development of such a model holds the 
potential to significantly improve the reliability and efficiency of solar energy integration 
into the regional electricity grid. 

In (Sivaneasan, Yu, & Goh, 2017) proposed an improved solar forecasting algorithm 
based on artificial neural network (ANN) model with fuzzy logic pre-processing. The 
proposed model also includes an improved error correction factor aimed at minimizing 
the forecast error by incorporating the error from previous 5-min forecasted output to the 
input layer. The clear-sky model and weather data obtained from a weather station in 
Singapore are used for training the developed model. The numerical result prove that the 
error correction factor coupled with a pure ANN can significantly improve solar irradiance 
forecast accuracy due to the adaptive error correction ability. A slight improvement can 
also be achieved by incorporating a fuzzy logic pre-processing to classify cloud cover 
index based on relative humidity, rainfall and the time of the day.  
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In (Nespoli et al., 2019) proposed the analysis the 24-h-ahead power forecasting 
performance of the two methods; the results show the good forecasting performance of 
both methods in the case of sunny days. While the hybrid method shows an excellent 
performance for some specific days, the second method under study shows a more stable 
and consistently good performance. The forecasting performance of both methods drops 
significantly for cloudy days. Again, while the performance of the hybrid method is better 
for some specific days, for at least one day the prediction is rather poor, and the method 
that feeds exclusively on data from the dataset shows more stable performance on both 
Normalized Mean Absolute Error (NMAE) and weighted mean absolute error (WMAE) 
metrics.  

In (Aprillia, Yang, & Huang, 2020) proposed a short-term PV power forecasting algorithm 
based on a CNN-SSA. Convolutional neural network (CNN) regression is used to 
construct the prediction model, and salp swarm algorithm (SSA) is used to identify the 
optimal CNN parameter. CNN classification is used for the CNN-SSA to obtain the correct 
weather type. The results show the proposed method provided better accuracy than the 
benchmark algorithms did. The proposed algorithm provides a simple approach. 

In (Yadav, Pal, & Tripathi, 2019) proposed a new hybrid approach to photovoltaic energy 
prediction. The proposed approach used Particle swarm optimization (PSO) algorithm to 
optimize adaptive neuro-fuzzy inference system (ANFIS) parameters. After optimization, 
the ANFIS parameters were updated and tested. The predicted results of the proposed 
method were compared with some existing methods BPNN and ANFIS. As a result, it is 
clear that the predicted result of the proposed method is significant in four seasons. The 
average % MAPE of the predicted result is 8.42 % of the proposed method. Four-week 
Symmetric mean absolute percentage error (sMAPE) is much better than previous 
reference methods, with mean sMAPE being 6.88. Therefore, the proposed method 
shows the promising result of photovoltaic energy with acceptable computing time. 

In (Su, Batzelis, & Pal, 2019), a comprehensive performance assessment among some 
of the most popular PV power forecasting methods is performed on a common dataset. 
Non-linear Autoregressive Neural network with exogenous input (NARXNN) is found to 
be superior over other neural networks due to its dynamic feedback mechanism. Random 
Forest (RF) performs the best among the intelligence algorithms. There is a seasonal 
effect on the forecasting problem; summer and autumn are easier to forecast than spring 
and winter. The training process of a neural network exhibits great randomness, while 
intelligent algorithms are generally more robust. The proposed Hybrid method performs 
most favourably among all methods, correcting erroneous fluctuations and negative 
forecasting. In fact, a major conclusion from this investigation is that simple combination 
of several good models can generate a more reliable prediction than any single method 
on its own. This may be found useful especially when there is no complete data for model 
training.  

In (Shi, Zhu, Yuan, Hao, & Wang, 2018), based on the influence of environmental factors 
on the output power of PV power generation, based on the limit learning machine, a 
forecasting model of PV power output is set up with weather types, and the historical 
power data of the PV power station is reasonably divided according to the different 
weather types, and the weather type is further classified by the grey correlation analysis 
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method. The output results of improved equal-dimension grey (IEDG) model are used as 
the input of the extreme learning machine (ELM) model, and ELM model is trained and 
tested. The prediction results are analyzed to get the following conclusions: IEDG-ELM 
proposed in this paper can effectively predict the output power of PV systems under 
various weather conditions, IEDG-ELM models proposed in this paper has a relatively 
accurate prediction ability and strong applicability. 

2 Artificial Neural Network (ANN) 

Artificial neurons (ANNs) are networks of interconnected nodes that process and send 
information. These networks are inspired by the arrangement and functioning of biological 
neural networks found in the human brain. ANNs are capable of learning patterns from 
data and making predictions or decisions based on those learned patterns. 

Each artificial neuron performs a simple computation: it takes a weighted sum of its inputs, 
applies an activation function, and then passes the result to the next layer of neurons. 
The connections between neurons have associated weights that are adjusted during the 
training process to optimize the network's performance on a given task. 

The layers of neurons in an ANN are typically organized into three main types: 

i. Input Layer: This is the first layer and receives the raw input data. Each neuron in 
this layer corresponds to a feature in the input data. 

ii. Hidden Layers: These are intermediate layers between the input and output 
layers. They perform computations on the input data using the learned weights 
and activation functions. Hidden layers are responsible for extracting relevant 
features from the data. 

iii. Output Layer: This is the final layer that produces the network's prediction or 
output. The number of neurons in this layer depends on the task. For example, in 
a binary classification task, there would be one neuron to indicate the probability 
of one class. 

2.1  Feed-Forward Neural Network  

Feedforward Neural Networks, also known as multi-layer perceptrons (MLPs), are a 
fundamental type of artificial neural network. They consist of an input layer, one or more 
hidden layers, and an output layer. Each layer contains a set of interconnected neurons, 
also known as nodes, and these neurons are organized into a sequential manner where 
the information flows only in one direction, from the input to the output. 
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Figure I shows the schematic diagram of the feed-forward neural network (FFNN) 

 

 

 

 

 

 

 

 

Fig. I: Architecture of FFNN 

2.2 Artificial Neural network (ANN) Algorithm 

An overview of the mathematics involved in a Feedforward Neural Network (FFNN), 
including how data flows through the network, the activation functions, and the 
calculations at each layer. 

2.2.1 Data Flow 

In a FFNN, data flows through the network in a forward direction, from the input layer to 
the output layer. Each layer consists of neurons (also called units) that process the input 
and pass their outputs to the next layer. 

2.2.2 Neuron Output 

For a neuron in a hidden or output layer, the output can be calculated as follows: 

 


n

i ii bxwActivationOutput
1

)(  

where: 

Activation is the activation function (e.g., ReLU, sigmoid, tanh). 
n is the number of inputs. 

iw  are the weights associated with each input. 

ix  are the input values. 

b is the bias term. 
 
2.2.3 Activation Functions 

Activation functions introduce non-linearity into the network, enabling it to learn complex 
relationships in the data. Common activation functions include: 

 ReLU (Rectified Linear Activation): ),0max()(Re xxLU   
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 Sigmoid: 
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x 
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 Tanh (Hyperbolic Tangent): 
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 Softmax (for output layer in multi-class classification): 
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)max(  where C is the number of classes. 

2.2.4. Forward Propagation 

Forward propagation refers to the process of computing the outputs of each layer as data 
passes through the network. For each layer l, the output O is computed using the formula 
mentioned earlier: 

  
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2.2.5. Loss Function 

The loss function quantifies the difference between the predicted outputs and the true 
target values. 

2.2.6. Backpropagation 

Backpropagation involves computing gradients of the loss with respect to the network's 
parameters (weights and biases). The chain rule is used to propagate gradients backward 
through the network to update the parameters. 

2.2.7. Gradient Descent 

Gradient Descent is an optimization algorithm used to update the network's parameters 
based on the computed gradients. The weights and biases are adjusted in the opposite 
direction of the gradient to minimize the loss. 

2.2.8. Learning Rate 

The learning rate controls the step size during gradient descent. It determines how much 
the parameters are updated in each iteration: 

Updated weight = weight – learning rate x Gradient  

This provides a basic overview of the mathematics behind a Feedforward Neural Network.  

 

 

2.3  Performance Indicators of the reliability of the FFNN-based Model 

Certainly, when evaluating the performance of a Feedforward Neural Network (FFNN) for 
prediction tasks, you will want to consider various performance indicators that provide 
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insights into how well the network is making predictions. Here are the indicators used in 
this research: 

2.3.1 Mean Absolute Percentage Error (MAPE)  

The MAPE is a metric used to measure the accuracy of predictions in terms of percentage 
errors. It quantifies the average absolute percentage difference between the predicted 
values and the actual target values. The formula for MAPE is: 

1

( ) ( )1
100

( )

N Forecasted Actual
M

Actual

PV M PV M
MAPE abs

N PV M

 
  

 
  

Where, 
Abs = absolute value;  
N = total number of hours in the testing data (in the case of this work N = 1811)  
M stands for the Mth hour in the testing data;  
PVforecast (M) = forecasted PV for the Mth hour;  
PVactual (M) = actual PV for the Mth hour (this is the PV obtained from solar panel). 
 

2.3.2 Pearson Correlation Coefficient 

The Pearson Correlation Coefficient, often denoted as rr, measures the linear relationship 
between the predicted values and the actual target values. It ranges from -1 to 1, with r = 
1 indicating a perfect positive linear correlation. r = −1 indicating a perfect negative linear 
correlation. r = 0 indicating no linear correlation. The formula for Pearson correlation 
coefficient is: 

 
 

2

2
2

1 i i

i i i

a t
R

t t


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


       

 

Where, it  mean target value 

ti; target outputs  
ai; network outputs. 
 

3. METHODOLOGY 

3.1 Introduction 

This section outlines the implementation of Feedforward Neural Networks (FFNN) as the 
chosen forecasting technique, detailing the data preprocessing, network architecture, and 
training process as shown in Figure II. By elucidating the steps taken to develop the FFNN 
model, this chapter aims to provide a comprehensive understanding of the approach 
adopted for predicting photovoltaic power output in the specific context of Maiduguri. 
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Figure II: Flowchart for the proposed PV power forecasting technique 

3.2 Case Study – The PV Plant 

The generated power data was gathered from a solar system that is set up to power water 
boreholes at Culvert Junction, Indimi Road in Maiduguri Metropolitan Council, which is 
located 350 meters above sea level and at longitudes 13o 09’ East and 11o 51’ North. This 
PV system is shown in Plate 3.1 and has a total power output of 4 KWp and is composed 
of 12 PV modules of 325W Sunmodule Bisum SW and Inverter. The metrological used 
were relative humidity, temperature, wind speed and cloud cover which were obtained 
from Nigerian Metrological Agency (NiMet) website.  
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Figure III: picture of the plant 

The pertinent parameters of the PV panel measured at Standard Test Condition (STC) 
are as shown in Table I: 

Table I: Module Parameters 
Parameters Values 
Solar cells Sunmodule Bisum SW 325 XL duo 

Peak power 325W 
Rated voltage 37.7V 
Rated current 8.68A 

Open circuit voltage 47.0V 
Short circuit current 9.28A 

 

3.2.1 Selected Inputs and Output of the Model 

The FFNN needs a set of data to be trained, validated, and tested. It must have both the 
network's inputs and the corresponding desired output for a network with supervised 
learning as the MLP. Since the goal of this work is to anticipate the amount of power 
produced by a solar system, the generated power itself is the intended output, and the 
inputs are selected based on the factors that affect its generation. As a result, wind speed, 
cloud cover, temperature, relative humidity, hour of the day and day of the year were 
chosen to make up the network's input vector. 

3.2.2 Desired Output Vector 

DC current and voltage data were necessary for this study. As a result, the PV power 
(Ppv), which was calculated using the expression in equation 3.1, was used as the 
required output to the FFNN. 

  pv DC DCP I V          

A collection of measured data for the months of September 2021 to February 2022 was 
used to create the desired output vector. Since the PV system only operates during the 
day and this data only covers the period from 7 o'clock in the morning to 16 o'clock in the 
afternoon, there would be 10 data points in a day. 

Moreover, since the forecast window size selected in this study was one hour, the data 
was collected in an interval of one hour. Consequently, the number of data points was 10 
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per day, resulting in 310 data points in one month with 31 days, 300 data points in one 
month with 30 days and 280 data points in one month with 28 days. 

Since September to February was considered, the total number of data points was 1810. 

3.2.3 Input Vector 

The input vector was deduced from Nigerian Metrological Agency (NiMet) website. These 
variables were temperature, wind speed, cloud cover and humidity. These variables 
together with the hour in a day and day in a year composed as the network input vector.  
Also, it is imperative to notice that the parameters were obtained from the month of 
September 2021 to February 2022 with 1810 data points for each variable.  

The format of days was selected to take into account temporal autocorrelations of the 
target variable, as suggested in (Ceci, Corizzo, Fumarola, Malerba, & Rashkovska, 2016). 
Temperature and wind speed were selected because they were involved in penal 
efficiency estimation. Humidity was included because it influences temperature and 
irradiance (Mekhilef, Saidur, & Kamalisarvestani, 2012) and it is exploited with interesting 
results in several literature works (Ogliari, Gandelli, Grimaccia, Leva, & Mussetta, 2016; 
Zhang et al., 2017), Finally, cloud cover represents a numerical index for the estimation 
of the sky covering. Notice that Nigerian Meteorological Agency (Nimet) provided all the 
meteorological inputs. The variables are shown in Table II.  

Table II: Arrangement of Input and Output Matrix of 1810 x 7 
Hour of 
the day 

(h) 

Day of 
the 

week 

Next day 
temperature 

(0C) 

Next 
day 

relative 
humidity 

(%) 

Next 
day 

wind 
speed 
(m/s) 

Next 
day 

cloud 
cover 

(%) 

Actual 
PV 

(KW) 

7.00 1.00 25.33 90.00 10.67 43.00 1.50 
8.00 1.00 26.67 85.00 11.33 37.00 1.04 

.. .. .. .. .. .. .. 

.. .. .. .. .. .. .. 

.. .. .. .. .. .. .. 

.. .. .. .. .. .. .. 
16.00 181.00 37.67 8.00 22.33 0.00 2.60 

 

3.2.4 Feature Scaling 

Variables with different scales are included in the dataset. These situations, where distinct 
variables may have totally different scales, can result in a false prioritization of some of 
the variables in the model. As a result, feature scaling of the dataset is done to help speed 
up the algorithm's calculation and also to increase convergence rates. Less testing time 
was achieved after the dataset has been trained (Thara, PremaSudha, & Xiong, 2019). 

A popular pre-processing technique that was used here is normalization, which lessens 
the dispersion of the obtained data. In essence, the data are all rescaled so that they all 
fall within a specific range between 0 and 1. The dataset was normalized by computing: 
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 

max

1x
x

x


          

Where, x is the observed value and x’ is the normalized value.  

Literature has demonstrated that normalization has a substantial impact on the output of 
any model since its primary objective is to assure the quality of the data before it is 
supplied to any model. (Panigrahi & Behera, 2013). Tables III show the normalized values 
of the data.  

Table III: Normalized values of Input and Output Matrix of 1810 x 7 
Hour of 
the day 

(h) 

Day of 
the 

week 

Next day 
temperature 

(0C) 

Next 
day 

relative 
humidity 

(%) 

Next 
day 

wind 
speed 
(m/s) 

Next 
day 

cloud 
cover 

(%) 

Actual 
PV 

(KW) 

0.4375 0.0055 0.5891 0.9184 0.3333 0.4300 0.3750 
0.5000 0.0055 0.6202 0.8673 0.3542 0.3700 0.2600 

.. .. .. .. .. .. .. 

.. .. .. .. .. .. .. 

.. .. .. .. .. .. .. 

.. .. .. .. .. .. .. 
1.0000 1.0000 0.8760 0.0816 0.6979 0.0000 0.6500 

 

3.3 Training, Validation and Test set  

Training, validation, and testing are crucial steps in the development of a Feedforward 
Neural Network (FFNN) for predictive modeling. These procedures aid in making sure the 
model generalizes properly to fresh, unseen data.  

3.3.1. Training 

Training involves optimizing the model's parameters (weights and biases) to minimize the 
difference between its predictions and the actual target values. This is typically done using 
an optimization algorithm like stochastic gradient descent (SGD). The goal is to find the 
parameters that minimize a loss function, which measures the discrepancy between 
predictions and actual targets.  

The loss function for a regression problem can be mean squared error (MSE), defined 

as:   


n

i ii yy
n

MSE
1

21 
 

where: 
n is the number of data points. 

iy is the actual target value for the ith  data point. 

iy


 is the predicted value for the ith  data point. 
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During training, the weights and biases are updated using the gradient of the loss 
function with respect to the model parameters. The update rule for SGD is generally given 
by: 

gradientratelearningparameterparameter oldnew  _  

where the gradient is computed using the chain rule of calculus. 

 

 

3.3.2. Validation 

Validation is used to tune hyperparameters and assess the model's performance during 
training. A separate validation dataset, distinct from the training data, is used for this 
purpose. The model's performance on the validation set helps in preventing overfitting. 

Hyperparameters, such as the learning rate, number of hidden layers, and number of 
neurons in each layer, impact the model's performance. The goal is to select 
hyperparameters that generalize well to unseen data. Hyperparameter tuning can be 
performed by evaluating the model's performance on the validation set using different 
hyperparameter combinations. 

3.3.3. Testing 

Testing assesses the model's generalization performance on completely unseen data. A 
separate test dataset, distinct from both the training and validation data, is used. The 
model's predictions are compared to the actual target values to evaluate its performance. 

The most common metrics for regression tasks include: 

 Mean Absolute Percentage Error (MAPE):  

  


 100
1

Actual

ForecastActual

n
MAPE  

 Mean Absolute Error (MAE):  


n

i ii yy
n

MAE
1

ˆ
1

 

 Root Mean Squared Error (RMSE):   


n

i ii yy
n

RMSE
1

2ˆ
1

 

 Coefficient of Determination (R2): 
 
 

,
ˆ

1
1

2

1

2

2











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n

i i

n

i ii

yy

yy
R  where y is the mean of 

the actual target values. 

3.3.4. Overfitting and Regularization 

When a model learns to perform well on training data but cannot generalize to new data, 
it is said to be overfitting. Regularization techniques, such as L2 regularization (also 



InternaƟonal Journal of InformaƟon, Engineering & Technology 

arcnjournals@gmail.com                                                       Page | 55  
 

known as weight decay), can help mitigate overfitting by adding a penalty term to the loss 
function based on the magnitude of the weights. 

L2 regularization adds a term to the loss function: 

 
i izedunregularidregularize LossLoss 2

2


 

where λ is the regularization parameter and i represents the model parameters. 

In summary, training, validation, and testing are essential steps in the development of a 
FFNN for prediction. These steps ensure that the model learns meaningful patterns from 
the data, generalizes well to new data, and avoids overfitting. Hyperparameter tuning and 
regularization play significant roles in achieving a well-performing model. 

The topology was selected at random. The maximum number of hidden layers is one, 
while the maximum number of neurons in the hidden layer is eight. Nevertheless, some 
parameters were defined, even for the random selection. Those specifications were 
crucial and supported by the literature. One hidden layer was sufficient to achieve a 
reasonable generalization for this issue, as illustrated in Figure IV. 

 

 

 

 

 

Figure IV: FFNN Model  

In this network, the inputs of the network will be time of the day, day of the year, 
temperature, wind speed, humidity and cloud cover. These parameters were presented 
to the network and the forecast of the power output of the photovoltaic system was done. 
The results are shown in the next chapter. 

3.4 Training Algorithm  

Based on MATLAB's recommendations regarding training time and memory 
requirements, a backpropagation technique was chosen. one chose to work with and 
optimize the model based on one training strategy because the model may be trained 
using other training algorithms. The Levenberg-Marquardt algorithm was selected 
because it is frequently the quickest backpropagation algorithm in the Deep Learning 
Toolbox and is strongly suggested as a first-choice supervised approach by (Dias, 
Antunes, Vieira, & Mota, 2005). 

The Levenberg-Marquardt algorithm also known as Levenberg-Marquardt optimization is 
an iterative optimization method commonly used in nonlinear least squares curve fitting. 
It is name after Kenneth Levenberg and Donald Marquardt, who independently proposed 
the algorithm. The algorithm is particularly effective when fitting models with a set of 
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parameters to experimental data by minimizing the sum of the squared differences 
between the model’s predictions and the observed data. The Levenberg-Marquardt 
algorithms combines the advantages of two other optimization methods: the steepest 
descent method and the Guass-Newton method. It performs a series of iteration to adjust 
the parameters of the model until convergence is achieved. During each iteration, the 
algorithm calculates the Jacobian matrix, which contains the partial derivatives of the 
model with respect to each parameter. The algorithm then uses the Jacobian matrix, along 
with the current parameter values and the observed data, to update the parameter 
estimates. The update step involves solving a system of linear equations, which includes 
a damping term that combines the steepest descent and Gauss- Newton methods. The 
damping terms allows the algorithm to converge efficiently even in the presence of ill-
conditioned problems. It iterates until a termination requirement, such as attaining a 
predetermined number of iterations or a desired level of convergence, is satisfied. The 
result is an estimate of the parameters that minimize the sum of squared differences 
between the model’s predictions and the observed data (Dias et al., 2005). 

 

4. RESULTS AND DISCUSSIONS 

4.1 Introduction  

This section presents the training of the FFNN, analysis of data collected from PV system 
and discussion of the result. In this chapter, correlation coefficient R and mean absolute 
percentage error (MAPE) are used to evaluate the forecasting accuracy of the FFNN 
Model. The validation of the model was done using ANFIS. Graphical illustrations and 
analysis of the results was provided using MATLAB GUI. 

Figure V shows the total monthly DC power produced by the examined PV system from 
September 2021 to February 2022. The highest and lowest monthly cumulative powers, 
2.5980 KW in February and 1.3557 KW in September, respectively, were obtained. 

 

 

 

 

 

 

 

 

 

 

Figure V: Monthly total DC power produced from September 2021 to February 2022. 
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4.2 Training the FFNN Network 

In the context of this work, the Levenberg – Marquardt optimization algorithm was used 
because of its fast convergence speed. The maximum number of epochs was set to 1000 
which is the default value. Learning rate was also set to default value and was allowed to 
adjust automatically as the training process was in progress.  

The results obtained from the simulation of the model were discussed based on three 
listed plots  

- The Regression plot  

- The Performance plot 

- Training State plot  

 

4.2.1 Regression Plot  

This comprises of four regression analysis plots as shown in figure VI. 
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 Figure VI: Regression plots. 

In a regression plot of a Feedforward Neural Network (FFNN), the R-values 
represent the correlation coefficients between the predicted outputs and the actual target 
values for different datasets. Here's what each R-value means: 

 R = 0.70226 for training: This R-value (0.70226) indicates the correlation between 
the predicted outputs of the FFNN and the actual target values on the training 
dataset as shown in Fig. 4.2a. A correlation coefficient of 1.0 would mean a perfect 
correlation, while a value of 0.0 would indicate no correlation. R = 0.65498 for 
validation: The validation dataset is depicted in Fig. 4.2b, and this R-value 
(0.65498) shows the correlation between the projected outputs and the actual 
target values. A stronger correlation is indicated by a higher R-value, which implies 
that the model's predictions match the validation data more closely. 

 R = 0.6786 for testing: This R-value (0.6786) denotes the correlation between the 
predicted outputs and the actual target values on the testing dataset as shown in 

c 

b a 

d 
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Fig. 4.2c. A higher R-value here means that the model's predictions have a 
relatively strong correlation with the testing data. 

 R = 0.69736 for the overall plot: This R-value (0.69736) represents the correlation 
between all predicted outputs and their corresponding actual target values across 
all datasets combined (training, validation, and testing) as shown in Fig. 4.2d. It 
provides an overall assessment of the model's performance on the entire dataset. 

In summary, the regression plot displays the correlation coefficients (R-values) for the 
FFNN's predictions compared to the actual target values on different datasets. Higher R-
values indicate a better alignment between the predictions and the actual values, 
suggesting a more accurate and reliable model. 

4.2.2 Performance plot  

This is a plot of the mean squared error (MSE) against the number of training epochs as 
shown in Figure VII. From the plot it can be clearly seen that the network had the best 
validation performance of 0.055679 at epoch 25. The "Best validation performance" of 
0.055679 at epoch 25 refers to the lowest value of a performance metric (e.g., Mean 
Squared Error) achieved by a machine learning model on the validation dataset during its 
training process up to epoch 25. In this case, the model achieved an MSE of 0.055679 at 
the 25th training epoch, which indicates that it performed well and had low prediction 
errors on the validation dataset at that particular point in the training process. 

 

   Figure VII: Performance Plot. 
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4.2.3   Training State Plot  

The training state plot comprises of three (3) different plot as shown in Fig. VIII. Each of 
the plot is explain as follows:  

 Gradient = 0.0052512 at epoch 31: This indicates the gradient value at epoch 31 
during the training process as shown in Fig. 4.4a. The gradient represents the 
slope of the loss function with respect to the model's parameters. It is used in 
optimization algorithms, like stochastic gradient descent, to update the model's 
parameters and minimize the loss. 

 Learning rate = 0.00001 at epoch 31: As shown in Fig. 4.4b, the learning rate is 
a hyperparameter that controls the step size during the optimization process. At 
epoch 31, the learning rate was set to 0.00001, which means the model's 
parameters were updated using smaller steps, which could lead to slower 
convergence but may help avoid overshooting the optimal solution. 

 Validation checks = 6 at epoch 31: As seen in Fig. 4.4c, validation checks are 
the frequencies at which the model's effectiveness is assessed on the validation 
dataset during the training phase. At epoch 31, the model was checked on the 
validation dataset six times, likely after every few epochs, to monitor its 
performance and prevent overfitting. 

In summary, the training state plot provides insights into the training process at 
epoch 31, including the gradient value, the learning rate used for parameter updates, and 
the frequency of validation checks to assess the model's performance. These factors 
collectively influence how the model is optimized and how well it generalizes to unseen 
data. 
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        Figure VIII: Training state plot  of FFNN model one    
  

4.3 Performance Evaluation 

As described in section 2.5, the FFNN was evaluated using MAPE and the result obtained 
was validated using ANFIS. The result of the performance evaluation was shown in Table 
IV.  

Table IV: Actual and forecast PV of FFNN and ANFIS 
 FFNN    ANFIS  

Hours Actual 
PV 

(KW) 

Forecasted 
PV (KW) 

APE Hours Actual 
PV 

(KW) 

Forecasted 
PV (KW) 

APE 

7.00 0.7150 0.7097 0.7424 7.00 0.7150 0.5759 19.4545 
8.00 0.8625 0.6723 22.0492 8.00 0.8625 0.5831 32.3942 
9.00 0.7275 0.6447 11.3793 9.00 0.7275 0.6194 14.8591 

10.00 0.6575 0.7048 7.1960 10.00 0.6575 0.7767 18.1293 
11.00 0.7550 0.7708 2.0900 11.00 0.7550 0.9000 19.2053 
12.00 0.8225 0.8875 7.8986 12.00 0.8225 0.8823 7.2705 
13.00 0.8175 0.8516 4.1759 13.00 0.8175 0.7465 8.6850 
14.00 0.7675 0.7295 4.9481 14.00 0.7675 0.5972 22.1889 
15.00 0.6000 0.6067 1.1233 15.00 0.6000 0.5643 5.9500 
16.00 0.5650 0.4097 27.4906 16.00 0.5650 0.5758 1.9115 

a 

b 

c 
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 Fig. IX: PV power output Vs hours for a day 

As can be inferred from Table 4.1 and also in Fig. IX, the forecasting results of 
Photovoltaic (PV) power output in Maiduguri using FFNN (Feedforward Neural Network) 
showed that at 7.00 hours, the predicted power output was 0.7097 kW, with an Absolute 
Percentage Error (APE) of 0.7424. This indicates that the FFNN model's prediction was 
quite close to the actual value. On the other hand, the ANFIS (Adaptive Neuro-Fuzzy 
Inference System) model, used as a validation tool, predicted a power output of 0.7150 
kW at 7.00 hours, but its APE was much higher, standing at 19.4545. This implies that the 
ANFIS model had a larger discrepancy between its predictions and the actual values. 

The forecasting results of Photovoltaic (PV) power output using the FFNN at 8.00 hours 
showed a power output of 0.6723 kW. The APE for this prediction was 22.0492%. On the 
other hand, the ANFIS as a validation tool predicted a power output of 0.5831 kW at the 
same time, with an APE of 32.3942%. 

The forecasting results of Photovoltaic (PV) power output using the FFNN at 9.00 hours 
showed a power output of 0.6447 kW. The APE for this prediction was 11.3797%. On the 
other hand, the ANFIS as a validation tool predicted a power output of 0.6194 kW at the 
same time, with an APE of 14.8591%. Both models, FFNN and ANFIS, demonstrated 
relatively low APE values, indicating that they are performing well in predicting the PV 
power output at 9.00 hours in Maiduguri. The FFNN appears to have a slightly lower APE 
than ANFIS, suggesting it might have a slightly more accurate prediction for this particular 
time slot. 

The prediction results of Photovoltaic (PV) power output using the FFNN at 10.00 hours 
showed a power output of 0.7048 kW. The APE for this prediction was 7.1960%. On the 
other hand, the ANFIS as a validation tool predicted a power output of 0.7767 kW at the 
same time, with an APE of 18.1293%. In this case, the FFNN demonstrated a relatively 
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low APE, indicating that it provided a more accurate prediction for the PV power output at 
10.00 hours in Maiduguri compared to ANFIS. The difference in APE between the two 
models is significant, with FFNN outperforming ANFIS by a considerable margin in terms 
of predicting accuracy. 

The predicting results of Photovoltaic (PV) power output using the FFNN at 11.00 hours 
showed a power output of 0.7708 kW. The APE for this prediction was 2.090%. On the 
other hand, the ANFIS as a validation tool predicted a power output of 0.900 kW at the 
same time, with an APE of 19.2053%. In this instance, the FFNN demonstrated an 
extremely low APE, indicating that it provided a highly accurate prediction for the PV 
power output at 11.00 hours in Maiduguri. On the contrary, ANFIS showed a significantly 
higher APE, implying that its prediction had a higher percentage of error compared to 
FFNN. The substantial difference in APE between the two models suggests that FFNN is 
performing notably better than ANFIS in forecasting the PV power output in Maiduguri at 
11.00 hours. 

The predicting results of Photovoltaic (PV) power output using the FFNN at 12.00 hours 
showed a power output of 0.8875 kW. The APE for this prediction was 7.886%. On the 
other hand, the ANFIS as a validation tool predicted a power output of 0.8823 kW at the 
same time, with an APE of 7.2706%. In this case, both the FFNN and ANFIS models 
demonstrated relatively low APE values, indicating that they provided accurate 
predictions for the PV power output at 12.00 hours in Maiduguri. The difference in APE 
between the two models is minimal, suggesting that both FFNN and ANFIS performed 
similarly well in forecasting the power output at this time slot. 

The predicting results of Photovoltaic (PV) power output using the FFNN at 13.00 hours 
showed a power output of 0.8516 kW. The APE for this prediction was 4.1759%. On the 
other hand, the ANFIS as a validation tool predicted a power output of 0.7465 kW at the 
same time, with an APE of 8.6859%. In this scenario, the FFNN demonstrated a relatively 
low APE, indicating that it provided a highly accurate prediction for the PV power output 
at 13.00 hours in Maiduguri. On the other hand, ANFIS also had a reasonable APE value, 
although slightly higher than that of FFNN. Overall, both models, FFNN and ANFIS, seem 
to perform well in forecasting the PV power output at 13.00 hours in Maiduguri. The FFNN 
shows a slightly better accuracy compared to ANFIS, but the difference in APE between 
the two models is not significant. 

The predicting results of Photovoltaic (PV) power output using the FFNN at 14.00 hours 
showed a power output of 0.7285 kW. The APE for this prediction was 4.9481%. On the 
other hand, the ANFIS as a validation tool predicted a power output of 0.5972 kW at the 
same time, with an APE of 22.1889%. In this case, the FFNN demonstrated a relatively 
low APE, indicating that it provided a highly accurate prediction for the PV power output 
at 14.00 hours in Maiduguri. On the contrary, the ANFIS model showed a significantly 
higher APE, suggesting that its prediction had a higher percentage of error compared to 
FFNN. The difference in APE between the two models is substantial, with FFNN 
significantly outperforming ANFIS in forecasting accuracy for the PV power output at 
14.00 hours. This suggests that the FFNN model is more reliable and accurate in 
predicting the power output at this specific time slot in Maiduguri. 
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The predicting results of Photovoltaic (PV) power output using the FFNN at 15.00 hours 
showed a power output of 0.6067 kW. The APE for this prediction was 1.1233%. On the 
other hand, the ANFIS as a validation tool predicted a power output of 0.5643 kW at the 
same time, with an APE of 5.9500%. In this case, both the FFNN and ANFIS models 
demonstrated relatively low APE values, indicating that they provided accurate 
predictions for the PV power output at 15.00 hours in Maiduguri. The FFNN had a slightly 
lower APE than ANFIS, suggesting that it provided a slightly more accurate prediction for 
this specific time slot. It's impressive to see both models performing well and providing 
reliable forecasts for the PV power output. The difference in APE between the two models 
is minimal, indicating that both FFNN and ANFIS are suitable forecasting tools for PV 
power output in Maiduguri at 15.00 hours. 

The predicting results of Photovoltaic (PV) power output using the FFNN at 16.00 hours 
showed a power output of 0.4097 kW. The APE for this prediction was 27.4906%. On the 
other hand, the ANFIS as a validation tool predicted a power output of 0.5758 kW at the 
same time, with an APE of 1.9115%. In this case, the FFNN demonstrated a high APE, 
indicating that it provided a less accurate prediction for the PV power output at 16.00 
hours in Maiduguri. On the contrary, the ANFIS model showed a significantly lower APE, 
suggesting that its prediction was more accurate compared to FFNN. The difference in 
APE between the two models is considerable, with ANFIS outperforming FFNN in 
forecasting accuracy for the PV power output at 16.00 hours. This suggests that the 
ANFIS model is more reliable and accurate in predicting the power output at this specific 
time slot in Maiduguri. 

This research presents the results of forecasting solar power output of ahead using the 
Feedforward Neural Network (FFNN) model. The Mean Absolute Percentage Error 
(MAPE) of 8.9093 indicates that, on average, the FFNN model's predictions have an error 
of approximately 8.91%, which suggests a relatively accurate performance in predicting 
the solar power output. 

The R-value of 0.7632 is the correlation coefficient, which measures the strength and 
direction of the linear relationship between the predicted values and the actual values. An 
R-value of 0.7632 indicates a moderately strong positive correlation, suggesting that the 
FFNN model's predictions are reasonably aligned with the actual solar power output. 

The research also compares the FFNN model's performance with a validation tool called 
ANFIS (Adaptive Neuro-Fuzzy Inference System). The ANFIS model has a higher MAPE 
of 15.0048, indicating that, on average, its predictions have a larger error of approximately 
15.00% compared to the FFNN model. 

Moreover, the R-value of 0.3533 for ANFIS shows a weak positive correlation between 
the predicted values and the actual values, suggesting that ANFIS's predictions are less 
accurate and less aligned with the actual solar power output compared to the FFNN 
model. 

Based on the results, the research suggests that the FFNN model performs better in 
forecasting the Photovoltaic power output in Maiduguri compared to the ANFIS model. It 
demonstrates a lower MAPE and a stronger correlation with the actual values, indicating 
its superiority in predicting solar power generation in this specific scenario. 
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5.  Conclusion  

A Feedforward Neural Network (FFNN) model was trained using historical PV power 
output, meteorological data (such as temperature, relative humidity, wind speed, and 
cloud cover), and other pertinent factors (such as hour of the day and day of the year). 
This comprehensive dataset was employed to develop a robust FFNN model for potential 
applications in forecasting PV power output based on meteorological conditions and time-
related factors. 

The collected data, including historical PV power output, meteorological variables 
(temperature, relative humidity, wind speed, cloud cover), and time-related factors (hour 
of the day, day of the year), underwent a preprocessing phase. This preprocessing aimed 
to transform and condition the data, making it suitable for use as input to the Feedforward 
Neural Network (FFNN) model. By preparing the data appropriately, it ensured that the 
FFNN model could effectively learn and make accurate predictions regarding PV power 
output based on the provided meteorological and temporal information. 

A Feedforward Neural Network (FFNN) architecture was successfully implemented. This 
FFNN architecture was designed specifically for time series forecasting, with the primary 
goal of predicting PV power output. By tailoring the FFNN to handle time-related patterns 
and relationships, it laid the foundation for accurate and effective predictions of PV power 
output based on the given historical data, meteorological variables, and relevant temporal 
factors. 

The implemented Feedforward Neural Network (FFNN) model was trained using historical 
data. The training process involved feeding the FFNN with the collected dataset, which 
included historical PV power output, meteorological variables (temperature, relative 
humidity, wind speed, cloud cover), and time-related factors (hour of the day and day of 
the year). Through this training, the FFNN learned the underlying patterns and 
relationships within the data, enabling it to make accurate predictions of PV power output 
based on future meteorological conditions and temporal factors. 

The trained Feedforward Neural Network (FFNN) model was successfully implemented 
for the purpose of day ahead PV power output forecasting in the Maiduguri metropolis. 
The FFNN model, which had been trained using historical data comprising PV power 
output, meteorological variables, and relevant temporal factors, was now utilized to 
predict PV power output for a day ahead in Muhammadu Road of Maiduguri. This 
implementation has provided valuable insights into the expected PV power generation 
based on the anticipated meteorological conditions, enabling better resource planning 
and decision-making for energy management in the Maiduguri metropolis. 

In conclusion, the research investigated the forecasting of Photovoltaic (PV) power output 
in Maiduguri using a Feedforward Neural Network (FFNN) model. The FFNN model 
demonstrated superior performance with a lower Mean Absolute Percentage Error 
(MAPE) of 8.9093 and a higher correlation coefficient (R) of 0.7632 compared to the 
ANFIS (Adaptive Neuro-Fuzzy Inference System) validation tool, which yielded a MAPE 
of 15.0048 and an R value of 0.3534. This confirms the efficacy of the FFNN model in 
accurately predicting PV power output and highlights its potential for enhancing 
renewable energy forecasting in Maiduguri. 
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