

Maximal Subsemigroups of the Semigroup of all Order-preserving and Order-decreasing Partial Injective Contractions of a Finite Chain

A. Mustapha and B. Ali

Department of Mathematics and Statistics, Ramat Polytechnic, Maiduguri, Borno Department of Mathematical Sciences, Nigerian Defence Academy, Kaduna

Abstract: Let $X_n = \{1, 2, ..., n\}$ be a finite chain and ODCI_n be the semigroup of all order-preserving and orderdecreasing partial injective contraction mappings. In this work the characterisation of the maximal subsemigroups of the semigroup ODCI_n is obtained.

Keywords: Maximal, Finite Chain, Semigroup, Subsemigroup

1 Introduction

Let $[n] = \{1, 2, ..., n\}$ be an *n*-elements set. A mapping $\alpha: [n] \rightarrow [n]$ is called transformation on [n], the set of all transformations under the composition of mappings is called semigroup. Let $I_{[n]}$ denote the symmetric inverse semigroup the analogue of symmetric inverse group. A mapping whose domain is a subset of [n] is called partial transformation, if the domain is whole of [n] is full transformation. The semigroup of all partial (full) transformations is denoted by $\mathcal{P}_{[n]}(\mathcal{T}_{[n]})$ respectively, where as, $I_{[n]}$ consist of all partial one-one(injective) transformations. we denote by $dom(\alpha)$ and $im(\alpha)$ the domain and image of α respectively. A transformation $\alpha \in I_{[n]}$ is said to be orderpreserving(respectively orderreversing) if $x \leq y \Rightarrow x\alpha \leq y\alpha$ (respectively $x\alpha \geq y\alpha$) for all $x, y \in dom(\alpha)$, is said to be orderdecreasing(respectively, order-increasing) if for all $x \in dom(\alpha) \Rightarrow x\alpha \leq x$ (respectively, $x\alpha \geq x$), is isometry if $|x\alpha - y\alpha| = |x - y|$ and contraction or compression if $|x\alpha - y\alpha| \leq |x - y|$. In this work, we will investigate the maximal subsemigroups and there number for the semigroup of all order-preserving and order-reversing partial injective contractions, ODCI_[n].

We denote by $\mathcal{CP}_{[n]}(\mathcal{CT}_{[n]})$ and $\operatorname{CI}_{[n]}$, the semigroup of partial(full) and partial one-one contractions respectively. The study of semigroups of contraction maps on a finite chain was initiated by Umar and Al-kharous [3], in which the notations for the new semigroups and its subsemigroups where proposed. Investigation on some semigroups of contractions were recorded, for details (see [1, 14, 10, 2, 15]). A subsemigroup M of a semigroup S is just a subset that is closed under the operation of S. A maximal subsemigroup M of a semigroup S is a proper subsemigroup that is not contained in any other proper subsemigroup, every proper subsemigroup of a finite semigroup is contained in a maximal subsemigroup[16].

There are alots of papers on finding the maximal subsemigroups of a particular classes of finite semigroups (for example; [6, 5, 13, 7, 9, 17, 8, 11]). Ganyushkin and Mazorchuk [4], described the maximal subsemigroups, maximal inverse subsemigroups and maximal nilpotent subsemigroups of the semigroup $IO_{[n]}$ the semigroup of all partial order-preserving injections. Dimitrova and Koppitz

[13] obtained the characterisation of the maximal subsemigrous of the ideals of $IO_{[n]}$. In Dimitrova [5] characterised the maximal subsemigroups of $ODP_{[n]}$ the semigroup of all partial order-preserving isometries a subsemigroup of all partial order-preserving transformations.

In the present work, we obtained the characterisation of the maximal subsemigroups of the semigroup $ODCI_{[n]}$. we will adopt standard notations and consider the use of some definitions in what follows, this paper is the analogue of Dimitrova [5].

An elament $\alpha \in ODCI_{[n]}$ can be written in the following tabular form

$$\alpha = \begin{pmatrix} a_1 & a_2 & \dots & a_r \\ b_1 & b_2 & \dots & b_r \end{pmatrix}, \qquad (1 \le r \le n)$$

$$(1)$$

 $b_i \le a_i$ and $|x\alpha - y\alpha| \le |x - y|$ for all $i \in [n]$. we will multiply mappings

from left to right and use the corresponding notation for the left to right compotion of transformations $x(\alpha\beta) = (x\alpha)\beta$, for all $\alpha, \beta \in \text{ODCI}_{[n]}$. Since α is injective $|dom(\alpha)| = |im(\alpha)|$ called the rank rank (α).

2 Ideals and starred Green's relations

Recall the characterisation of the ideals and starred Green's relation in [18]

Proposition 1 [[18], Theorem 1, 2 & 3] Let $\alpha \in ODCI_{[n]}$, then the principal left(right) and two sided ideals generated by α has the forms

(i) $\mathcal{ODCI}_{[n]}\alpha = \{\beta \in \mathcal{ODCI}_{[n]} : im(\beta) \subseteq im(\alpha)\}$

(ii) $\alpha \mathcal{ODCI}_{[n]} = \{\beta \in \mathcal{ODCI}_{[n]} : dom(\beta) \subseteq dom(\alpha)\}$

(iii) $\mathcal{ODCI}_{[n]} \alpha \mathcal{ODCI}_{[n]} = \{\beta \in \mathcal{ODCI}_{[n]} : rank(\beta) \leq rank(\alpha)\}.$

Proof 1 (*i*) Let $\alpha \in ODCI_n$, suppose $A = \{\beta \in ODCI_n : im(\beta) \subseteq im(\alpha)\}$. If δ

 \in ODCI_n, we have $(x)\delta a = (x\delta)a$. by [[18], lemma 4] $im(\delta a) \subseteq im(a)$ and thus ODCI_n $a \subseteq A$. Conversely, consider an arbitiry $\beta \in A$. We have $im(\beta) \subseteq im(a)$. For each $b \in im(\beta)$ choose some a_b such that $(a_b)a = b$. Consider a transformation δ for which $dom(\delta) = dom(\beta)$ and such that for $x \in dom(\beta)$ we have $x\delta = a_b$ and thus $(x)\delta a = ((x)\delta)a = (a_b)a = b$, implies that $A \subseteq$ ODCI_n a as required.

Proof 2 (ii) Let $A = \{\beta \in ODCI_n : dom(\beta) \subseteq dom(\alpha)\}$. Suppose $\delta \in ODCI_n$ such that, $\alpha \delta = \beta$, we have $dom(\alpha \delta) = dom(\beta)$, but by [[18],lemma 4] $dom(\alpha \delta) \subseteq dom(\alpha) \subseteq dom(\beta)$, thus, $ODCI_n \subseteq A$.

Conversely, suppose $\beta \in A$ and $dom(\beta) \subseteq dom(\alpha)$, implies that there exist δ in ODCI_n such that $\beta = \alpha \delta$ but $\alpha \delta \in \alpha$ ODCI_n. Hence $A \subseteq$ ODCI_n.

Proof 3 (iii) Let
$$D = \{\beta \in ODCI_n : rank (\beta) \le rank (\alpha)\}, by[[18], lemma 4]$$

(iii) we have ODCI_n α ODCI_n \subseteq D. To show that $D \subseteq$ ODCI_n α ODCI_n, let $im(\alpha) = \{a_1, a_2, \ldots, a_k\}$ and $\beta \in D$ be such that rank (β) = m, and $im(\beta) = \{b_1, b_2, \ldots, a_m\}$. Then $m \leq k$ and for each $i = \{1, \ldots, k\}$ we choose some element c_i in the set $A_i = \{x \in X_n : (x)\alpha = a_i\}$. Define λ , $\delta \in$ ODCI_n in the following

Page | 48

way: $dom(\lambda) = dom(\beta)$, $im(\delta) = im(\beta)$ and for all y in $B_j = \{z \in X_n : (z)\beta = b_j\}$, j = 1, ..., m, we set $(y)\lambda = c_j$ and $(a_i)\delta = b_j j = 1 ..., m$, hence $\lambda a \delta = \beta$. which implies $\beta \in ODCI_n a ODCI_n$, thus, $D \subseteq ODCI_n a ODCI_n$, and hence $D = ODCI_n a ODCI_n$.

Corollary 1 All two-sided ideals of ODCI_[n] are principal and form the following

chain:

$$0 = I_0 \subset I_1 \subset \dots \subset I_{n-1} \subset I_n = \text{ODCI}_{[n]}$$
⁽²⁾

we denote by

$$I_{(r)} = \left\{ \alpha \in \mathcal{ODCI}_{[n]} \colon rank\left(\alpha\right) \le r \right\}, \qquad (0 \le r \le n)$$
(3)

a two-sided ideal of $ODCI_{[n]}$, consisting of elements of rank not more than r.

Next we consider the following results.

Theorem 1 [[18], Theorem 6] Let $\alpha, \beta \in ODCI_{[n]}$, then

- 1. $(\alpha, \beta) \in \mathcal{L}^* \left(\mathcal{ODCI}_{[n]} \right)$ if and only if $im(\alpha) = im(\beta)$. 2. $(\alpha, \beta) \in \mathcal{R}^* \left(\mathcal{ODCI}_{[n]} \right)$ if and only if $dom(\alpha) = dom(\beta)$.
- 3. $(\alpha, \beta) \in \mathcal{H}^* \left(\mathcal{ODCI}_{[n]} \right)_{if and only if \alpha} = \beta$ 4. $\mathcal{D}^* \left(\mathcal{ODCI}_{[n]} \right) = \mathcal{J}^* \left(\mathcal{ODCI}_{[n]} \right)$

Recall that the relation K on the semigroup ODCI_[n] is defined as

$$\mathcal{K} = \mathcal{R}^{*}\left(\mathcal{ODCI}_{[n]}
ight) \circ \mathcal{L}^{*}\left(\mathcal{ODCI}_{[n]}
ight) \circ \mathcal{R}^{*}\left(\mathcal{ODCI}_{[n]}
ight)$$

where

$$\mathcal{K} = \mathcal{D}^{*}\left(\mathcal{ODCI}_{[n]}
ight) = \mathcal{J}^{*}\left(\mathcal{ODCI}_{[n]}
ight)$$

The principal factor denoted I_{r}/I_{r-1} $(1 \le r \le n)$ or $K \cup \{0\}$ is Rees Quotent, in which the non-zero elements of I_{r}/I_{r-1} are of rank precisely r. The product of any two elements of I_{r}/I_{r-1} is 0 if it falls into the lower K-classes, otherwise is of rank r. Let

$$K_r = \left\{ \alpha \in \mathcal{ODCI}_{[n]} \colon rank\left(\alpha\right) = r \right\} \quad (0 \le r \le n)$$
(4)

It is clear that I_r is the union of the sets K_0, K_1, \ldots, K_n .

It is obvious that K_n contained exactly one element the identity $\{1_{[n]}\}$.

Now, we consider the elements in K_{n-1} -class as follows;

$$\varepsilon_1 = \begin{pmatrix} 2 & \dots & n \\ 2 & \dots & n \end{pmatrix}$$
(5)

$$\varepsilon_n = \begin{pmatrix} 1 & \dots & n-1 \\ 1 & \dots & n-1 \end{pmatrix}$$
(6)

$$\varepsilon_{i} = \begin{pmatrix} 1 & \dots & i-1 & i+1 & \dots & n-1 \\ 1 & \dots & i-1 & i+1 & \dots & n-1 \end{pmatrix}, (2 \le i \le n-1)$$
(7)

$$\beta_{i} = \begin{pmatrix} 1 & \dots & i-1 & i+1 & \dots & n \\ 1 & \dots & i-1 & i & \dots & n-1 \end{pmatrix}, (2 \le i \le n-1)$$
(8)

$$\gamma = \begin{pmatrix} 2 & 3 & \dots & n \\ 1 & 2 & \dots & n-1 \end{pmatrix}$$
(9)

Lemma 1 There are *n* idempotents in K_{n-1} of ODCI_[n].

Proof 4 Each K_r -class consist of elements of rank r, therefore, nC_r gives the number of subsets of cardinality r which also gives the number of partial identities, hence ${}^nC_{n-1}$ gives the number of idempotents K_{n-1} -class.

Lemma 2 *The set* K_{n-1} *contains exactly* 2n - 1 *elements.*

Proof 5 From the above lemma, K_{n-1} -class consist of exactly n idempotents and exactly 1 isometry which is not an idempotent, any other order-preserving and orderdecreasing partial injective contractions can form in n - 2 ways, thus we have n + 1 + n - 2 = 2n - 1.

An element $\alpha \in \text{ODCI}_{[n]}$ is said to be undecomposable if it cannot be express as a product of elements say δ , $\varphi \in \text{ODCI}_{[n]} \setminus \{\alpha\}$ such that $\alpha = \delta \varphi$. The element $1_{[n]}$ is undecomposible in $\text{ODCI}_{[n]}$. However, if $\alpha = \delta \varphi$ and $\alpha \in K_{n-1}$ then δ , $\varphi \in K_{n-1}$ and $dom(\delta) = dom(\alpha)$ also, $im(\varphi) = im(\alpha)$.

Observe that $\varepsilon_i \beta_i = \beta_i$ and all other product of the elements in K_{n-1} are 0, as such, we deduce that; Corollary 2 *The elements in* K_{n-1} *are undecomposible in* ODCI_[n]. Corollary 3 $K_{n-1} \subseteq \langle \gamma, \beta_i : i \in \{2, 3, ..., n-1\}, \varepsilon_i : i \in \{1, ..., n\} \rangle$.

Proposition 2 For each $0 \le r \le n - 1$, $K_r \subseteq \langle K_{r+1} \rangle$

Proof 6 Let $\alpha \in K_r$ be as in equation 1, we show that there exist δ , $\varphi \in K_{r+1}$ such that $\alpha = \delta \varphi$. We consider cases for the elements in dom $(\alpha) = \{a_1, a_2, \ldots, a_r\}$ and $im(\alpha) = \{b_1, b_2, \ldots, b_r\}$, for $a_i < a_{i+1}$, $b_i < b_{i+1}$ and $b_i \leq a_i$ for all i

case (1) if
$$|b_{i+1} - b_i| = |a_{i+1} - a_i|$$
 all ($i \in \{1, ..., r-1\}$),

subcase (1.1) $(a_1, b_1 > 1)$ *and* $(a_r, b_r = n)$ *then*

$$\alpha = \begin{pmatrix} a_1 - 1 & a_1 & \dots & a_r \\ b_1 - 1 & b_1 & \dots & b_r \end{pmatrix} \begin{pmatrix} b_1 - 2 & b_1 & \dots & b_r \\ b_1 - 2 & b_1 & \dots & b_r \end{pmatrix}$$

subcase (1.2) $(a_1, b_1 = 1)$ and $(a_r, b_r = n)$ then $\alpha = \begin{pmatrix} a_1 & a_1 + 1 & \dots & a_r \\ b_1 & .b_1 + 1 & \dots & b_r \end{pmatrix} \begin{pmatrix} b_1 & b_1 + 2 & \dots & b_r \\ b_1 & b_1 + 2 & \dots & b_r \end{pmatrix}$

subcase (1.3)
$$(a_i, b_i \ge 2)$$
 and $(a_r, b_r = n)$ then

$$\alpha = \begin{pmatrix} a_1 & a_i + 1 & \dots & a_r \\ b_1 & . & . & . & b_r \end{pmatrix} \begin{pmatrix} b_1 & b_i + 2 & \dots & b_r \\ b_1 & b_i + 2 & \dots & b_r \end{pmatrix}$$

subcase (1.4)
$$(a_1, b_1 = 1)$$
 and $(a_r, b_r < n)$ then

$$\alpha = \begin{pmatrix} a_1 & \dots & a_r & a_r + 1 \\ b_1 & \dots & b_r & b_r + 1 \end{pmatrix} \begin{pmatrix} b_1 & \dots & b_r & b_r + 2 \\ b_1 & \dots & b_r & b_r + 2 \end{pmatrix}$$

case (2) if $|b_{i+1} - b_i| = |a_{i+1} - a_i| = 2$ *for all (i* $\in \{1, ..., r-1\}$) *case(2.1) (a*₁, *b*₁ = 1), (*a*_r, *b*_r = *n*) and there exist (*j*, *l* $\in \{1, ..., r-1\}$) such that

 $\begin{aligned} \chi &= \begin{pmatrix} a_1 & & & & \\ b_1 & \cdots & a_j b_j & a_j + 1 & b_j^{a_j + 1} & \cdots & a_l & a_{l+1} & & \\ b_1 & & & & b_{j+1} & \cdots & b_l & b_{l+1} & \cdots & \\ & & & & & & \\ b_1 & & & & & b_{j+1} & \cdots & b_l & b_l + 1 & b_{l+1} & & \\ & & & & & & \\ b_1 & & & & & b_j b_j & b_{j+1} & \cdots & b_l & b_l + 1 & b_{l+1} & & \\ & & & & & & \\ b_1 & & & & & b_j b_j & b_{j+1} & \cdots & b_l & b_l + 1 & b_{l+1} & \cdots & b_r \\ & & & & & & \\ subcase (2.2) & (a_{l_1}, b_1 = 1), (a_{r_1}, b_r = n) & and & there & exist (j, l \in \{1, \dots, r-1\}) & such \end{aligned}$

Page | 51

that

$$\alpha = \begin{pmatrix} a_1 & \dots & a_i & a_j + 1 & a_{i+1} & \dots & a_r \\ b_1 & \dots & b_i & b_j + 1 & b_{i+1} & \dots & b_r \end{pmatrix} \begin{pmatrix} b_1 & \dots & b_i & b_j + 2 & b_{i+1} & \dots & b_r \\ b_1 & \dots & b_i & b_j + 2 & b_{i+1} & \dots & b_r \end{pmatrix}$$

 $case (3) if | b_{i+1} - b_i | = 1, | a_{i+1} - a_i | > 2 for some i. case (3.1) (a_1, b_1 = 1)$ and $(a_r = n)$ $\alpha = \begin{pmatrix} a_1 & a_1 + 1 & \dots & a_r \\ b_1 & b_1 + 1 & \dots & b_r \end{pmatrix} \begin{pmatrix} b_1 & b_1 + 2 & \dots & b_r \\ b_1 & b_1 + 2 & \dots & b_r \end{pmatrix}$

case (3.2) $(a_1, b_1 = 1)$ and $(a_r = n)$

$$\alpha = \begin{pmatrix} a_1 & \dots & a_{r-1} - 2 & a_r \\ b_1 & \dots & b_{r-1} - 2 & b_r \end{pmatrix} \begin{pmatrix} b_1 & \dots & b_{r-1} - 1 & b_r \\ b_1 & \dots & b_{r-1} - 1 & b_r \end{pmatrix}$$

case (3.3) $(a_1, b_1 = 1)$ and $(a_r = n)$ there exist $(j, l \in \{1, ..., r-1\})$ such that

$$\alpha = \begin{pmatrix} a_1 & & & & & \\ b_1 & \dots & a_j b_j & a_j + 1 & b_j & a_{j+1} & \dots & a_l & & a_r \\ & & & b_{j+1} & & & b_l & & \\ & & & b_{j+1} & & & & b_r & \\ & & & b_1 & & & b_{j+1} & & & b_{l+1} & \dots & b_r \\ & & & & & b_l & b_l + 1 & b_l + 1 & \dots & b_r \\ & & & & b_1 & \dots & b_j b_j, & & b_l & + 1 & b_{l+1} & \dots & b_r \\ case (4) (a_1, b_1 = 1), (a_r = n, b_r = n - 1) there exist (j, l \in \{1, \dots, r - 1\}) with$$

$$case (4.1) | b_{j+1} - b_j |= 1, | a_{l+1} - a_l |> 1 such that$$

$$a_{l} = a_{1} \dots a_{j} a_{j} + 1 a_{j+1} \dots a_{r}$$

$$a = a_{l} \dots b_{j} b_{j} + 1 b_{j+1} \dots b_{r}$$

$$a_{l} = b_{1} \dots b_{j} b_{j} + 2 b_{j+1} \dots b_{r}$$

$$b_{l} \dots b_{j} b_{j} + 1 b_{j+1} \dots b_{r-1}$$

case (4.2) $|a_{j+1} - a_j| > 1$, $|b_{l+1} - b_l| > 1$ such that

this completes the proof.

we now have the following

Corollary 4	For $0 \le r \le n-1$	$I_r = \langle K_r \rangle$
Corollary 5	$\langle K_n \cup K_{n-1} \rangle = \text{ODCI}_{[n]}.$	

3 Maximal subsemigroups

We start with the following lemma which is also found in [4, 5]

Lemma 3 Every maximal subsemigroup of $ODCI_{[n]}$ contains the ideal I_{r-2} .

Proof 7 Let *M* be a maximal subsemigroup of $ODCI_{[n]}$. if $K_{n-1} \subseteq M$ then by corollary 2, $I_{r-2} \subseteq I_{r-1} = \langle K_{n-1} \rangle \subseteq M$. If $K_{n-1} \subsetneq M$, then $M \cup I_{r-2}$ is a proper subsemigroup in $ODCI_{[n]}$ and hence $M \cup I_{r-2} = M$ by maximality of *M*. This implies $I_{r-2} \subset M$.

The main result on the maximal subsemigroups of the semigroup $ODCI_{[n]}$.

Theorem 2 A subsemigroup M of a semigroup $ODCI_{[n]}$ is maximal if and only if is in one of the following four forms:

(i)
$$M_{1_{[n]}} = \mathcal{ODCI}_{[n]} \setminus \{1_{[n]}\}$$

(ii) $M_{\gamma} = \text{ODCI}_{[n]} \setminus \{\gamma\}.$

(iii) $M_{\epsilon i} = \text{ODCI}_{[n]} \setminus \{\epsilon_i\}$ $(i \in \{1, ..., n\}).$

(iv) $M_{\beta i} = \text{ODCI}_{[n]} \setminus \{\beta_i\}$ ($i \in \{2,3,...,n-1\}$). Proof 8 Let ϵ_i , β_i and γ be defined as in equation 7, 8 and 9. It is clear that $M_{1[n]}$ is a maximal subsemigroup of $\text{ODCI}_{[n]}$, since $\mathcal{ODCI}_{[n]} \setminus \{1_{[n]}\} = I_{r-1} and I_{r-1} \cup \{1_{[n]}\} = \mathcal{ODCI}_{[n]} From corollary$ 2 & 3, we

have the elements the γ , β_i ($i \in \{2,3,...,n-1\}$) and ϵ_i ($i \in \{1,...,n\}$) are undecom-

posible in K_{n-1} and all the elements are needed to generate K_{n-1} . Therefore, M_{γ} , $M_{\epsilon i}$ and $M_{\beta i}$ are subsemigroups of ODCI_[n]. It is clear that they are maximal since $M_{\gamma} \cup \{\gamma\} = ODCI_{[n]}$, $M_{\epsilon i} \cup \{\epsilon_i\} = ODCI_{[n]}$ and $M_{\beta i} \cup \{\beta_i\} = ODCI_{[n]}$.

Conversely, let M be a maximal subsemigroup of ODCI_[n]. Then $M = I_{n-2} \cup B$, where $B \subset (K_{n-1} \cup K_n)$, from lemma 3. If $K_n \subseteq B$ then $M \subseteq M_{1[n]}$ since $K_n = \{1_{[n]}\}$ and thus $M = M_{1[n]}$ by the maximality of M. If $K_n \subseteq B$, then $K_{n-1} \subseteq B$ since $K_{n-1} \subseteq \langle \gamma, \beta_i : i \in \{2, 3, ..., n-1\} \in i : i \in \{1, ..., n\}$, by corollary 3, the set B is contained in $K_{n-1} \setminus \{\zeta\}$ for some $\zeta \in \{\gamma, \beta_i \in i : i \in \{2, 3, ..., n-1\}\}$. Therefore, $M = M_\gamma$, $M = M_{ci}$ and $M = M_{\beta i}$ for $i \in \{1, ..., n\}$, $i \in \{2, 3, ..., n-1\}$ by the maximality M.

Corollary 6 There are exactly 2n - 2 maximal subsemigroups in ODCI_n.

Proof 9 The idempotents ϵ_1, ϵ_n can be express as product of an identity with another element, thus, we only consider the n - 2 idempotents, we can form order-preserving and order-decreasing elements in n - 1 ways and the identity element which give us n - 2 + n - 1 + 1 = 2n - 2.

References

- [1] P. Zhao and M. Yang. Regularity and Green's relations on semigroups of transformations preserving order and compression. *Bull Korean Math. Soc.* 49 (2012), 1015-1025.
- [2] A. Umar M. M. Zubairu, On Certain semigroups of full contractions of finite chain, arXiv:1804.10057v1 [math.GR] 2018
- [3] A. Umar and F. Al-Kharousi. Studies in semigroup of contraction mappings of a finite chain. The Research Council of Oman Research grant proposal No. ORG/CBS/12/007, (2012)
- [4] O. Ganyushkin and V. Mazorchuk, On the structure of IO_n. Semigroup Forum, 66 (2003), 455-483.
- [5] I. Dimitrova. The maximal subsemigroups of the semigroup of all partial orderpreserving isometries, *Proceedings of the Fifth International Scientific Conference* –FMNS2013. Volume 1, Math. Nat. Sci., pages 95-101. South-West Univ. "Neofit Rilsky", Blagoevgrad.(2013)
- [6] I. Dimitrova, V. H. Fernandes, and Jörg Koppitz. The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain, *Publ. Math. Debrecen* 81(2012)11-29.
- [7] I. Dimitrova and T. Mladenova. Classification of the maximal subsemigroups of the semigroup of all partial order-preserving transformation, Mathematics and Education in Mathematics, *Proceeding of the Forty First Spring Conference of the Union of Bulgarian Mathematicians, Borovetz*.(2012) 158-162.
- [8] Z. Yi. Maximal subsemigroup of partial order-preserving transformation semigroup PO_n. J. *Guizhou Norm. Univ., Nat. Sci.*, 29 (2011), No. 2, 88-89.
- [9] I. Dimitrova and J. Koppitz. The maximal subsemigroups of the ideals of the semigroup of all isotone partial injections, *Proceedings of the Third International Scientific Conference* – FMNS2009. Volume 1, Math. Nat. Sci., pages 45-49. SouthWest Univ. "Neofit Rilsky ", Blagoevgrad.(2009)
- [10] A. D. Adeshola and A. Umar. Combinatorial results for certain semigroups of order-preserving full contractions of a finite chain. *J Comb. Maths. and Comb. Computing*. (2013).
- [11] X. Yang. A classification of maximal subsemigroups of finite order-preserving transformation semigroups. *Communication in Algebra*, 28(2000), 1503-1513.
- [12] P. J. Cameron. The Art of counting 1 April 2014.
- [13] I. Dimitrova and J. Koppitz, The maximal subsemigroups of the ideals of some semigroups of partial injections, *General Algebra and Applications*, 29 (2009), 153-167.
- [14] M. M. Zubairu and B. Ali B., On the ideals of semigroup of partial contractions on a finite chain, (2016) Submitted
- [15] G. U. Garba, M. J. Ibrahim and A. T. Imam On certain semigroups of full contraction maps. *Turk. J. Math.*, 41 (2017), 500-507.

- [16] C. R. Donoven, J. D. Metchell and W. A. Welson, Computing maximal subsemigroups of a finite semigroup. arXiv:1606.05583v4 [math.CO] 6 July 2018.
- [17] I. Dimitrova The maximal subsemigroups of ideals of some semigroups of partial injections. *Gen. Alg. & Application*, 29 (2009), 153-167.
- [18] A. Mustapha, The ideals and green's relations of the semigroup of all orderpreserving and order-decreasing finite partial injective contractions of a finite chain. (to be submitted)