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Abstract: This paper evaluates the computational efficiency and convergence characteristics of the Crow 
Search Algorithm (CSA) for the strategic placement and sizing of Distributed Generator (DG) units in Radial 
Distribution Networks (RDNs). The objectives are to minimize total power losses and improve the voltage 
profile. The CSA's performance was tested on the IEEE 33-bus distribution system. Results indicate that 
CSA typically converges with fewer iterations, averaging 7 iterations, and requires less computational time, 
approximately 3.343 seconds, due to its efficient search mechanism and minimal parameter adjustment 
requirements. Introducing up to 3 DGs using CSA resulted in a 40.99% reduction in system losses and a 
53.13% improvement in the overall voltage profile compared to the base case without DGs. These findings 
highlight the effectiveness of CSA in solving optimal DG allocation problems, demonstrating its 
computational efficiency and robust convergence characteristics. 
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1. INTRODUCTION 
Persistently poor voltage profiles are a common issue in many areas of Nigeria, par cularly 
affec ng consumers situated at considerable distances or connected to distribu on networks at 
moderately distant loca ons from their service transformers. Voltage distribu on in Nigeria 
typically operates at 230V for single-phase and 415V for three-phase systems. However, voltages 
in numerous Nigerian loca ons o en plummet to as low as 180V, regularly exposing many power 
consumers' appliances to opera onal failures and damages (Nwohu et al., 2018). 

The strategic incorpora on of Distributed Generators (DG) into distribu on systems provides 
numerous advantages for both power consumers and DG equipment owners. This integra on not 
only stabilizes voltage at the consumer level but also generates income for DG operators. The 
inefficiencies prevalent in many Nigerian distribu on networks, marked by substan al line losses, 
voltage drops, and con nuous fluctua ons, highlight the urgent need to reduce these losses and 
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improve overall efficiency, par cularly in terms of voltage quality and reliability. This is the 
founda on of the current research. 

Various researchers are exploring op mal sizing and placement of DG units using different 
algorithms. For example, Mahmoud et al. (2014) developed an efficient method for iden fying 
the op mal loca on and size of DG units in distribu on power systems. By combining well-
established techniques, they achieved results that closely matched simula on outcomes. 
Addi onally, Moein et al. (2018) used a popula on-based metaheuris c approach called the 
clonal algorithm for DG placement in radial distribu on systems. Their study showed a significant 
reduc on in power losses, demonstra ng the poten al for considerable improvements with DG 
integra on.  

Furthermore, Mark et al. (2017) modeled an 11 kV Piggery distribu on feeder of the Abuja 
Electricity Distribu on Company in ETAP and used Ant Colony Op miza on (ACO) in MATLAB to 
determine the op mal DG loca on, achieving a 10.7% improvement in voltage profile and a 66% 
reduc on in power losses, though only a single DG was considered without sizing. Conversely, 
Jagan et al. (2017) hybridized Gene c Algorithm (GA) and Par cle Swarm Op miza on (PSO) to 
reduce real power losses, opera ng costs, and enhance voltage stability in radial distribu on 
systems. Their hybrid algorithm, validated on IEEE-33 and 69 bus systems, demonstrated superior 
effec veness compared to using GA and PSO independently for op mal DG placement and sizing.  

Lastly, Eshan et al. (2020) proposed a Mul -leader Par cle Swarm Op miza on (MLPSO) method 
to determine the op mal loca ons and sizes of DGs for minimizing ac ve power losses. They 
iden fied DG loca ons using a voltage stability index (VSI) and determined DG sizes using the 
MLPSO algorithm, with power flow simula ons conducted via the backward-forward sweep 
method. Applied to the IEEE-33 bus system and a Malaysian bus system, the MLPSO method 
showed improved loss reduc on and reduced computa onal me compared to standard PSO. 

In this paper, we evaluate the computa onal efficiency and convergence characteris cs of the 
Crow Search Algorithm (CSA) for the strategic placement and sizing of DG units in radial 
distribu on networks. The effec veness of CSA in op mizing DG integra on is assessed on the 
IEEE 33-bus radial distribu on system, focusing on its ability to minimize power losses and 
improve voltage profiles with efficient convergence and computa onal performance. 

 

2. METHODOLOGY 

The methodology adopted for this research comprises the following steps: 

1. Deployment of the Crow Search Algorithm (CSA) on IEEE 33-Bus System: 
a. Formulation of the optimization function with objectives focused on power loss 

reduction and voltage improvement. 
b. Definition of optimization constraints. 
c. Implementation of CSA to optimize the formulated objective functions. 
d. Application of CSA specifically on the IEEE 33-bus system within the MATLAB platform 

to identify optimal DG placements. 
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e. Comparison of results from CSA with the base case scenario, evaluating 
improvements in power loss reduction and voltage profile enhancement. 

2. Evaluation of Computational Efficiency and Convergence Characteristics: 
a. Assessment of CSA's computational efficiency, including execution time of 

simulations. 
b. Analysis of CSA's convergence characteristics to determine its effectiveness in 

optimizing DG locations and sizes on the IEEE 33-bus system. 

3.0 PROBLEM FORMULATION 

The problem formula on encompasses the objec ve func ons and constraints of the Smell Agent 
Op miza on Algorithm to solve the op miza on problem. 

3.1 Objec ve Func ons Formula on 

The objec ve func ons in this work aim to minimize power losses across the distribu on line 
length. 

To minimize a func on comprising several parameters, the general func on is expressed as a 
summa on of those parameters. 

 

    𝑓 = 𝑓 + 𝑓 + ⋯ + 𝑓 = ∑ 𝑓    (1)  

3.1.1 The parameter of the DG size 

It is vital that the op mal DG size be deployed on the network buses and is given by equa on (2) 

                   where;                                                𝑓 = ∑ 𝑃 (2)  

Where, 𝑃  is the DG capacity of the 𝑖𝑡ℎ bus, N is the set of possible loca ons. 

3.1.2 Parameter of the total power loss of the network 

The power loss of the network is calculated in equa on (3)  

𝑓 = 𝑓(𝑃 ) = 𝑃 (3) 
Here, 𝑃 is the total power loss of the network. Real and reac ve power loss analysis will be 
evaluated for the system with and without DG. The loss in the system can be calculated using 
equa on (4) (Witchit et at.,2006) also called the exact loss formula. 

 
   2 1 1

N N

ij i j i j ij i j i ji j
f PP QQ QP PQ 

 
       (4)                        

Where,   𝛼 =
 ( )

    (5)                       

     
𝛽 =

 ( )
  (6)                          

𝑃 and 𝑄  are net real and reac ve power injec on in bus 𝑖, respec vely. 
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𝑅 is the resistance between buses 𝑖 and 𝑗 

𝑉 and𝛿  are the voltage and angle at bus 𝑖 respec vely. 

According to the preceding equa ons, the final objec ve func on to be minimized is acquired 
as follows :     𝑓 = 𝑓 + 𝑓   (7)  

Subs tu ng the values of 𝑓  and 𝑓  into equa on (7) yields: 

𝑓 = ∑ 𝑃 + ∑ ∑ 𝛼 𝑃 𝑃 + 𝑄 𝑄 + 𝛽 (𝑄 𝑃 + 𝑃 𝑄 ) (8) 

3.2     Constraints 

Constraints are issue of great importance in op miza on procedures. An op mal answer is the 
answer that sa sfies all of the constraints of the op miza on problem. The following constraints 
will be considered while loca ng and sizing DGs. 

3.2.1   Power Injec on constraints 

This is given by: 

∑ 𝑃 ≤ ∑ 𝑃 + 𝑃  (9)                        

Where, 𝑃 is the real power loss in the system 

𝑃 is the real power genera on of DG at bus 𝑖. 

𝑃 is the power demand at bus 𝑖. 

3.2.2 Voltage constraints 

The varia on range of all of the distribu on buses should be within a specified limit. The voltage 
constraint is given below: 

|𝑉 |
≤ 𝑉 ≤ |𝑉 | (10) 

Here,  
|𝑉 | =0.95(pu)   (11) 

|𝑉 | = 1.05(pu)  (12) 
Voltages lower or higher than (±6%) exposes many power consumers’ appliances to opera on 
failure and damages. 

3.2.3Total Power Balanced Constraint 

lossesloadsubstation

N

i
DG PPPP 

1

  (13) 

 Where,  DGP  is the Power supply by DG 

 substationP is the Power supply from substa on 
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 loadP is the Power delivered to the network connected loads 

 lossesP is the Power losses on the network 

 N is the Number of distributed generators connected 

 

4.  Crow Search Algorithm (CSA)  

Crow search algorithm is a recent metaheuris c algorithm developed in 2016 by (Askarzadeh, 
2016), inspired on the intelligence behavior conducted by crows of hiding their excess food in a 
place and get it back when needed. CSA has been applied for different problems with different 
constraints. As an algorithm based on popula on, the size of the flock is confirmed by NC 
individuals (crows) which are of n−dimensional where n denotes the problem dimensions. Each 
crow (individual) is assumed to have the capability of remembering the best visited loca on to 
hide food. The posi on of each crow represents a poten al solu on of the problem. At itera on𝑖 , 
the posi on of crow 𝑖 is represented as: 

   𝑥 , = [𝑥 , , 𝑥 , , … . , 𝑥 , ]  (14) 

Where 𝑖, 𝑖𝑡𝑒𝑟 is the itera on number; and 𝑖  is the crow number. It is assumed that each crow 
saves the posi on of its cache in its memory. At itera on no. 𝑖, 𝑖𝑡𝑒𝑟, the posi on of the cache of 
crow 𝑖 is called 𝑚 , . This considers the best posi on of crow 𝑖 that is found so far. Indeed, the 
posi on of the best experience of each crow has been saved in its memory. In the environment, 
crows move to find be er food sources (caches) (Menna et al., 2018). 

The posi on is then modified according to Pursuit and Evasion behaviors.  

Pursuit: a crow j follows crow i with the purpose to discover its hidden place. The crow i does not 
no ce the presence of the other crow, as consequence the purpose of crow j is achieved.  

Evasion: the crow i knows about the presence of crow j and in order to protect its food, crow i 
inten onally takes a random trajectory. This behavior is simulated in CSA through the 
implementa on of a random movement.  

The expression for cases 1 and 2 (pursuit and evasion) is as follows: 

𝑥 , =
𝑥 , + 𝑟 × 𝑓𝑙 , × 𝑚 , − 𝑥 , , 𝑟 ≥ 𝐴𝑃 ,

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (15) 

Where𝑟  and 𝑟 are random numbers uniformly distributed between 0 and 1; 𝑓𝑙 is the flight 

length of crow 𝑖 at itera on 𝑖 ter; and 𝐴𝑃 , is the awareness probability of crow 𝑗  at 
itera on, 𝑖𝑡𝑒𝑟. 

The type of behavior considered by each crow 𝑖  is determined by an awareness probability 
(AP).Once crow 𝑖 updates its posi on, it will update its memory by: 
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𝑚 , =
, ,      ,     ,

  , ,          
 (16) 

The flight length (fl) parameter indicates the magnitude of movement from crow posi on 
towards the best posi on of crow j. 

CSA has two specific parameters, which dis nguish CSA from any other search technique; flight 
length (𝑓 l) and awareness probability (𝐴 P). 𝑓 l calculates the step size of the movement of crow 
𝑖 towards the cache of crow 𝑗 . If the value 𝑓 l is set between 0 and 1, the new posi on of crow 
𝑖 will be between 𝑥 ,  and 𝑚 ,  (local search), while if its value is set more than 1, the crow 
can reach beyond the cache (global search). 𝐴 P mainly controls intensifica on and diversifica on. 
By reducing the value of 𝐴 P, the search will be on a local region and intensifica on will increase. 
On the other hand by increasing its value, crows will search on a global scale (Mohamed et al., 
2019). 

 

A brief flowchart of the standard CSA is illustrated in Figure 1  
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Figure 1: Flowchart of the standard CSA (Mohamed et al., 2019) 

5.0 SIMULATION RESULTS AND DISCUSSION 
5.1 Results from the IEEE-33 Bus Test System 
The bus and line data for the standard IEEE 33-bus system were used to model the system in 
MATLAB 2016a, and the base case voltage for each bus was noted. The Crow Search Algorithm 
(CSA) was employed to determine the optimal locations and sizes of Distributed Generators (DGs) 
for the IEEE 33-bus network. In both scenarios, the bus voltages, total real power losses, and 
voltage profiles before and after DG placement were recorded for comparative analysis. 
5.1.1 Base Case Total System Loss and Average Voltage Profile 
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Initially, load flow analysis was conducted on the 33-bus system to ascertain the voltage at each 
bus and the total real power loss across the system. This analysis provided the baseline voltage 
and active power loss figures for the IEEE-33 bus system prior to incorporating DGs. The total real 
power loss in the base case was measured at 202.7 kW, with an average voltage of approximately 
0.9488 across the buses. 
5.1.2 Effect of DG Allocation on System Losses Using CSA 
Using the Crow Search Algorithm, optimal placement of DGs was performed on the IEEE-33 bus 
system. Table 1 presents the optimal sizes and locations of the DGs. Following the optimal 
placement, the total real power loss decreased significantly to 119.6 kW, and the enhanced 
voltage levels at each bus are depicted in Figure 2-3. Additionally, the average simulation time is 
detailed in Table 1. 
 
Table 1: Effect of DG placement on network losses reduction for IEEE-33 bus 

Number 
of DGs 

        

% Loss 
Reduc on 

Time of 
Simula on(s) 

Loca on 
(Bus 
number) 

DG 
size 
(kW) 

Loss 
without 
DG(kW) 

Loss 
With 
DG(kW) 

  

2.24 

202.7 

126.6 37.54 2.765 
2 

11 

14 1.47 

   

   

      

3 

11 0.74 

119.6 40.99 3.343 17 1.69 

23 0.96 

            

 
The table illustrates the impact of distributed generators (DGs) on reducing network losses within 
a distribution system. Installing two DGs results in a notable reduction in system losses, 
decreasing from 202.7 kW without DG to 126.6 kW, representing a 37.54 percent reduction in 
losses. The simulation time for this setup is efficient at 2.765 seconds, demonstrating effective 
computational management. 
Expanding to three DGs deployed at different bus locations (Buses 11, 17, and 23) with 
disparatecapacities, the combined effect is a reduction in system losses from 202.7 kW to 119.6 
kW with DGs operational, achieving a 40.99 percent reduction in losses. Despite the added 
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complexity from multiple DGs, the simulation time remains efficient at 3.343 seconds, indicating 
robust computational handling of network dynamics. 
These findings underscore the benefits of DG integration in distribution networks. Strategic 
placement of DGs enables engineers to significantly mitigate energy losses, enhance voltage 
stability, and improve overall network efficiency. The efficient simulation times further highlight 
the practical feasibility of DG integration in real-world applications, promising operational cost 
savings and environmental benefits. 
In conclusion, the simulation times presented in the table, 2.765 seconds for two DGs and 3.343 
seconds for three DGs demonstrate efficient computational handling despite the complexity 
introduced by multiple distributed generators. 
The figures 3 and 4 illustrate the real power loss plot subsequent to the successful power flow 
analysis of the IEEE-33 network, demonstrating the influence of varying numbers of installed DGs. 
These figures emphasize the convergence characteristics of the Crow Search Algorithm (CSA), 
highlighting its ability to reach an optimal solution. Specifically, CSA achieved convergence after 
3 iterations for 2 DGs and after 7 iterations for 3 DGs, underscoring its effective convergence 
capabilities. This capability underscores CSA's efficacy in reducing system losses and optimizing 
DG placement within distribution networks. 

 
 Figure 2: Real power loss of IEEE-33 bus after introducing 2 DGs using CSA 
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      Figure 3: Real power loss of IEEE-33 bus after introducing 3 DGs using CSA 
5.1.3 Voltage profile after DG allocation using CSA  
The base case and improved voltage magnitudes obtained from the simulation results were 
plotted against their respective bus numbers to visualize the enhancement in voltage profile 
following DG allocation using the CSA method. The average base case voltage was 0.9488. After 
integrating 2 DGs, the average voltage profile improved to 0.9734, and integrating 3 DGs further 
improved it to 0.9760. 
Figure 4 depicts the voltage profiles obtained after integrating 2 and 3 DGs, with a red line 
representing the base case voltage of 0.9488. The black line in Figure 4 represents the improved 
voltage profile after integrating 2 DGs using the CSA algorithm. In Figure 5, identical black line 
represents the improved voltage profile after integrating 3 DGs using the CSA algorithm. 

.  
Figure 4:Voltage Profile for IEEE 33-Bus Network after 2 DG installation Using CSA 
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Figure 5: Voltage Profile for IEEE 33-Bus Network after 3 DG installation Using CSA 
 
6.0 CONCLUSION 
In conclusion, this study evaluates the computational efficiency and convergence characteristics 
of the Crow Search Algorithm (CSA) for optimizing the placement and sizing of Distributed 
Generator (DG) units in Radial Distribution Networks (RDNs). Through simulations on the IEEE 33-
bus distribution system, CSA demonstrated robust performance, achieving convergence within 
an average of 7 iterations. The computational time for CSA was approximately 3.343 seconds, 
highlighting its efficient search mechanism and minimal parameter adjustment requirements. By 
strategically introducing up to 3 DGs using CSA, the study achieved significant improvements in 
network performance, including a 40.99% reduction in system losses and a notable 53.13% 
enhancement in the voltage profile compared to scenarios without DGs. 
These findings accentuate CSA's effectiveness in solving optimal DG allocation problems within 
distribution networks, showcasing its computational efficiency and reliable convergence 
characteristics. This research contributes to advancing methodologies for enhancing power 
distribution network operations, emphasizing the strategic deployment of DGs to minimize 
losses, improve voltage stability, and meet operational demands effectively. 
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