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Abstract: in this paper we extended mathema cal models that were based on integer order deriva ves to 
frac onal order deriva ves, we formulate and analyzed frac onal mathema cal modelling of dynamics of Lassa 
fever epidemic which includes both infected deceased and treatment compartments via Caputo sense. We proved 
that the propose mathema cal model is biological and meaningfully well-posed. We also compute the basic 
reproduc on number via next genera on method. The Lassa fever-free equilibrium 𝜀   is the only local asympto c 
stable equilibrium if  ℛ <  1 and it is not stable when  ℛ >  1. Sensi vity analysis of the model parameters 
indicates that  𝜓 and  𝛽  are the basic control parameters associated with persistence or eradica on of Lassa 
fever virus. More precisely, there is an inverse rela onship between ℛ   and 𝜓. In a similar note, increasing 
(decreasing) the value of  𝛽  keeping all other parameters fixed increases (decreases) the value of ℛ . We can 
infer from this result that good environmental sanita on and fumiga on would reduce rodents’ popula on 
thereby reducing the value of  𝛽  which leads to the decrease of ℛ . The existence and uniqueness of the solu on 
of proposed FODE are established through the fixed-point theory. The numerical results and simula ons of the 
extended frac onal order mathema cal model were explored in Caputo sense.  

Keywords: Lassa fever virus; threshold parameters; model fi ng; Sensi vity analysis; Control Parameters; Caputo 
frac onal order deriva ve and fixed-point theory. 

 
 

 

1 Introduction 

Lassa fever is also called Lassa hemorrhagic fever, is an infec ous disease and a zoono c viral 
illness ins gated by the Lassa virus, a single-stranded RNA virus from the Arenaviridae family 
[1, 2]. The mastomys natalensis which known as a mul mammate rat is the main host of this 
virus that is dominant in Sub-Saharan African as one of the most common rodent species [3–
5]. the viral par cle responsible for cause of Lassa fever was first iden fied in 1969 at Borno 
state northern region of Nigeria. However, the yearly es mated incidence in eastern and 
western regions of West Africa ranges from a hundred to three hundred thousand cases with 
nearly five thousand deaths [6–8] this momentum necessitated the Centers for Disease 
Control and Preven on (CDC) and World Health Organiza on (WHO) to declared Lassa fever 
as endemic and a health challenge in Western African Accordingly. The countries at the high-
risk for Lassa fever (belt) include Liberia, Guinea, Sierra Leone, and Nigeria [6, 9–11]. the 
largest epidemic was reported to be in Nigeria, with report of many outbreaks from the 
aforemen oned countries over the years. The largest outbreak of Lassa fever that swept 
through eighteen out of the thirty-six states of the country is reported to be in Nigeria, with 
over 400 confirmed cases were reported [12].  
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Although, the yearly increase of cases of Lassa virus has to do with various factor such as 
insufficient health facili es, polluted environment, and poor personal hygiene, to gather with 
the ecological climate factor rainfall and movement of harvested food into our communi es. 
These ac vi es are associated with an improve or increase in the host reservoir (mastomys 
rodents) to migrate from their natural habita on to the human environment, a reduce or 
diminished in the prevalence of Lassa fever is rely upon on human efforts in reducing the 
transmission propor on of this disease [3, 14].  

Lassa fever has an incuba on period between 6 and 21 days, hence, following this exposure 
period, infected humans are expected to start showing symptoms of the disease. Although 
about eighty percent of infected humans have only slight symptoms such as headaches, 
cough, muscle pain, sore throat, weakness, and fever. However, in severe cases, an infected 
human can develop more complica ons such as facial swelling, bleeding from the nose, 
respiratory distress, and low blood pressure [2, 11]. In a more cri cal situa on, this disease 
can lead to death within fourteen days a er the first appearance of the symptoms, due to 
neurological problems [2]. The Lassa virus is primarily spread to humans through human 
contact with food or substances that are contaminated by the urine or feces of an infected 
rodent [9], while secondary infec on from human-to-human and laboratory transmissions are 
likewise possible [10].  Due to the absence of a vaccine against Lassa fever, preven on against 
infec on has an important role in controlling the transmission of this disease in the 
popula on. Currently, since the eradica on of mastomys rodent popula on is unrealis c, the 
present ways of avoiding the spread of this infec on include the facilita on of good personal 
hygiene to avoid contact with infected rodents’ secre ons or excre ons, and implementa on 
of standard health facili es for effec ve tes ng, diagnosing and treatment of pa ents [10]. 

Literature revel that there is no confirmed cure or vaccine exists for Lassa fever yet, however, 
ribavirin is an an viral drug that has been declared as an effec ve treatment for Lassa fever 
pa ents, if administered at the premature period of the infec on [7, 9]. Consequently, the 
transmission dynamics of the virus is s ll not yet fully comprehended limited and far from 
being complete. Therefore, it is then important to urgently conduct various researches and 
explore new methods and techniques, which can help to be er understanding of the outbreak 
process and controlling the spread of the virus. 

Over the decade, mathema cal models have become vital tools in studying the dynamics of 
diseases in a given popula on. The recent development of the use of mathema cal models 
such as [2], has been developed for numerous diseases, to answer specific ques ons in an 
a empt to contribute to the understanding of the epidemiology of such disease under study. 
More specifically, studies have been carried out to further provide informa on on the 
transmission dynamics of Lassa fever (see [3, 7–9, 14]).  

Mathema cal model and simula on are a prac cal essen al tool that helps us to improve our 
understanding of the real world [16]. It can help to determine the characteris cs and 
magnitude of epidemic disease transmission, to predict its outbreak and to see which 
parameters are more influen al in the dynamics of the disease 

In recent decades, many physical problems have been modeled using the frac onal calculus. 
The main reasons given for using frac onal deriva ve models are that many systems show 
memory, history, or nonlocal effects, which can be difficult to model using integer order 
deriva ves. The main reasons given for using frac onal deriva ve models are that many 
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systems show memory, history, or nonlocal effects, which can be difficult to model using 
integer order deriva ves. The basic theory and applica ons of frac onal calculus and 
frac onal differen al equa ons can now be found in many studies (see, e.g., [15–19]). 
Although most of the early studies were based on the use of the Riemann–Liouville frac onal 
order deriva ve or the Caputo frac onal order deriva ve, it has been pointed out recently 
that these deriva ves have the problem that their kernels have a singularity that occurs at the 
end point of an interval of defini on. As a result, many new defini ons of frac onal deriva ves 
have now been proposed in the literature (see, e.g., [20–28]). The fundamental differences 
among the frac onal deriva ves are their different kernels which can be selected to meet the 
requirements of different applica ons. For example, the main differences between the Caputo 
frac onal deriva ve [16], the Caputo–Fabrizio deriva ve [22], and the Atangana– Baleanu 
frac onal deriva ve [30] are that the Caputo deriva ve is defined using a power law, the 
Caputo–Fabrizio deriva ve is defined using an exponen al decay law, and the Atangana–
Baleanu deriva ve is defined using a Mi ag–Leffler law. Examples of the applica ons of the 
new frac onal operators to real world problems have been given in a number of recent 
papers. For example, Tateishi et al. [24] have compared the classical and new frac onal me-
deriva ves in a study of anomalous diffusion. Also, Atangana have compared the Caputo–
Fabrizio frac onal deriva ve and the Atangana–Baleanu frac onal deriva ve in modeling 
frac onal delay differen al equa ons [29] and in modeling chao c systems [29]. They found 
that the power law deriva ve of the Riemann–Liouville frac onal deriva ve or the Caputo–
Fabrizio frac onal deriva ve provides noisy informa on due to its specific memory proper es. 
However, the Caputo–Fabrizio frac onal deriva ve gives less noise than the power law one 
while the Atangana–Baleanu frac onal deriva ve provides an excellent descrip on.  

Therefore, the novel feature of this research is to broaden exis ng knowledge by  develop and 
formulates ordinary differen al equa ons (integer-order deriva ves) and extend it to the 
frac onal differen al equa ons (non integer-order deriva ves) for the mathema cal model 
of the dynamic of Lassa fever by incorpora ng treatment, environment contamina on and 
infec ous deceased popula on compartments,  that will percipience the disease spread or 
control strategy, using Sensi vity analysis and numerical simula on of the model parameter 
values base on demographic data of Nigeria. 

2 The Mathema cal model descrip on, formula on and analysis 

2.1 model descrip on 

A mathema cal model of Lassa fever virus by in coopera ng infec ous deceased 
compartment with treatment is introduced. The total human popula on 𝑁 (𝑡) is divided into 
six compartments, namely, 𝑆(𝑡) represents the number of suscep ble individuals, 𝐸(𝑡) 
represents the number of exposed individuals in the stage of Lassa fever virus infec on,  𝐼 (𝑡) 
represents the number of infected popula on, 𝐼 (𝑡) represents the number of Infected 
deceased popula on (Individuals that contracted the disease through corpse or death 
infec ous human), 𝑇(𝑡) represents the number of individuals being treated; 𝑅(𝑡) represents 
the number of individuals who have recovered and 𝑁 (𝑡) is divided into two compartments, 
namely,  𝑆 (𝑡) represents the number of Suscep ble mastomys rats, 𝐼 (𝑡) represents the 
number of Infected mastomys rats. 

This study, engross on the effects of mul ple transmission pathways of Lassa Fever concerning 
the progression of the infec on in the human and rodent popula on. The use of mul ple 
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transmission routes may give us a be er understanding of the epidemiological structure of 
Lassa fever. Thus, the proposed model is formulated based on the following assump on. 

(a) There is homogeneous mixing of members of the population under consideration. 
(b) The dynamics outbreaks of Lassa fever in Africa (Nigeria) on yearly bases for relatively 

long period of time, allow a demographic process to take place as result of new 
additional inflow of new births and migration as well as deaths (natural or due to 
disease). 

(c) Deceased individuals can still transmit the infection to susceptible populations before 
and during burial/funerals arrangement or ceremonies.  

(d) Mostly poor resource countries are vulnerable to environmental transmission of the 
Lassa fever virus, due to the fact that environmental contribution is one of the 
essential factors enhancing the transmission process.  

(e) Environmental contamination occurs when Mastomys rats shed the virus through 
urine or faeces. Consequently, direct contact with virus infested materials, through 
touching of soiled household objects, eating contaminated food, or exposure to open 
wounds or sores, can lead to infection, similarly infection may occur during rodents 
capture and grooming as Mastomys rats are sometimes consumed as a source of 
food. 

Hence, the total human popula on and rodent’s popula on are 𝑁 (𝑡) = 𝑆(𝑡) +
𝐸(𝑡)+𝐼 (𝑡)+𝐼 (𝑡) + 𝑇(𝑡) + 𝑅(𝑡), and 𝑁 (𝑡) = 𝑆 (𝑡)+𝐼 (𝑡) respec vely. Therefore, the 
pictorial diagramma cal representa on of the model is shown in Fig. 1. According to Fig. 1, 
we have following model equa ons: 
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Descrip on of the state variables and the parameters of the flow chart model  

Symbol of the Variable Description 
𝑆(𝑡) Susceptible human individuals  
𝐸(𝑡) Exposed human individuals 
𝐼 (𝑡) Infected human individuals 
𝐼 (𝑡) Infected deceased individuals n  
𝑅(𝑡) Recovery human individuals 
𝑇(𝑡) Treatment human individuals 
𝑆 (𝑡) Susceptible mastomys rats  
𝐼 (𝑡) Infected mastomys rats 

 

Table 1.  The state variables of the flow chart model system 

Symbol of the 
Parameters 

Descriptions 

Π  Rate of recruitment of susceptible human population 
Λ 

 
Rate of recruitment of susceptible mastomys rat’s population 

𝜇 , ψ Natural death rate of human and mastomyns rat, respectively 
𝜙 Rate at which immunity wanes after recovery 

𝛾 , 𝛾  𝑎𝑛𝑑𝛾  Recovery rate of infected, treated and infectious deceased human, respectively 
        𝛼  and 𝛼  Disease induced death rates of individuals in 𝐼 (𝑡) and 𝐼 (𝑡), respectively 

𝛿 Disease induced death rate of infected individuals in 𝑇(𝑡) compartment 
𝜚, 𝜍, Rates at which infected humans & infected deceased move to treatment class, 

respectively 
𝜉𝜖(0,1) Proportion of new exposed individual that become symptomatically infected 

𝜗 Rate at which an exposed individual becomes infectious 
𝜑 Transmission rates due to contact with infected deceased population (𝐼 ) relative to 

the transmission rate due to infectious human corpse yet to be buried 
𝛽  The human-to-human contact rate  
𝛽  Mastomys rat-to-human contact rate 
𝛽  Mastomys rat-to-mastomys rat contact rate 

Table 2. The parameters of the flow chart model system 

 

2.2 Model Formula on  

From the flow chart in figure 1. and the model assump ons, the following system of integer 
order Ordinary differen al equa on (ODEs) is the required model. 

𝑑𝑆

𝑑𝑡
= Π + ϕ𝑅 − (𝜆 + 𝜇)𝑆 

𝑑𝐸

𝑑𝑡
= 𝜆 𝑆 − (𝜗 + 𝜇)𝐸 

𝑑𝐼

𝑑𝑡
= 𝜗𝜉𝐸 − (𝛾 + 𝜚 + 𝜇 + 𝛼 )𝐼  

𝑑𝐼

𝑑𝑡
= 𝜗(1 − 𝜉)𝐸 − (𝛾 + 𝜍 + 𝜇

+ 𝛼 )𝐼                                                                                                 (1) 
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𝑑𝑇

𝑑𝑡
= 𝜚𝐼 + 𝜍𝐼 − (𝛾 + 𝜇 + 𝛿)𝑇 

𝑑𝑅

𝑑𝑡
= 𝛾 𝐼 + 𝛾 𝐼 + 𝛾 𝑇 − (ϕ + 𝜇)𝑅 

𝑑𝑆

𝑑𝑡
= Λ − (𝜆 + ψ)𝑆  

𝑑𝐼

𝑑𝑡
= 𝜆 𝑆 − ψ𝐼  

With  

𝜆 =
𝛽 (𝐼 + 𝜑𝐼 ) + 𝛽 𝐼

𝑁
   𝑎𝑛𝑑    𝜆 =

𝛽 𝐼

𝑁
                                                                                (2) 

where 𝛽  is the effec ve contact rate for human-to-human transmission. 𝛽  is a mastomys rat-
to-human effec ve contact rate, and 𝛽  as mastomys rat-to-mastomys rat contact rate. 
Consequently, the parameters 𝜑 is a modifica on parameter which measures transmissibility 
reduc on of infected deceased popula on (𝐼 ).  

2.3 Caputo–Fabrizio frac onal model for transmission dynamics of Lassa fever 

Many new defini ons of frac onal order deriva ves have been proposed and used to develop 
and analyze mathema cal models for a wide variety of real-life problems, and the advantages 
of memory, history, or nonlocal effects of frac onal order deriva ves mo vated this research 
work. Consequently, Caputo and Fabrizio [22] recently developed a new frac onal order 
deriva ve without any singularity in its kernel which accurately describe the memory effect in 
a real-life problem. The kernel of the new frac onal deriva ve has the form of an exponen al 
func on. More recently, Losada and Nieto [23] derived the frac onal integral associated with 
the new frac onal Caputo–Fabrizio frac onal deriva ve. 

Now replacing the first-order me deriva ves of the le -hand side of (1) by the frac onal 
Caputo–Fabrizio deriva ve we obtain our new frac onal deriva ve model (Caputo–Fabrizio 
frac onal model for dynamics of Lassa fever epidemic mode) as follows: 

 𝐶𝐹 𝑆 = Π + ϕ𝑅 − (𝜆ℎ + 𝜇)𝑆 

 𝐶𝐹 𝐸 = 𝜆ℎ𝑆 − (𝜗 + 𝜇)𝐸 

 𝐶𝐹 𝐼1 = 𝜗𝜉𝐸 − (𝛾
1

+ 𝜚 + 𝜇 + 𝛼1)𝐼1 

 𝐶𝐹 𝐼2 = 𝜗(1 − 𝜉)𝐸 − (𝛾
2

+ 𝜍 + 𝜇 + 𝛼2)𝐼2 

  𝐶𝐹 𝑇 = 𝜚𝐼 + 𝜍𝐼 − (𝛾 + 𝜇 + 𝛿)𝑇                                                                                        (3) 

𝐶𝐹 𝑅 =  𝛾
1
𝐼1 + 𝛾

2
𝐼2 + 𝛾

3
𝑇 − (ϕ + 𝜇)𝑅         

 𝐶𝐹 𝑆𝑟 =  Λ − (𝜆 + ψ)𝑆  

𝐶𝐹 𝐼𝑟 =  𝜆𝑟𝑆𝑟 − ψ𝐼𝑟 
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where 𝐶𝐹 represents the Caputo-Fabrizio frac onal deriva ve of order 0 < 𝜌𝑖 ≤ 1, with the 
non-nega ve ini al condi ons 

𝑆(0) = 𝑆 , 𝐸(0) = 𝐸 , 𝐼 (0) = 𝐼 , 𝐼 (0) = 𝐼 , 𝑇(0) = 𝑇 , 𝑅(0) = 𝑅  , 𝑇(0) = 𝑆 , 𝐼 (0) =

𝐼                                                                                                                                                                            (4) 

We assume that the frac onal orders (0 <  𝜌𝑖 <  1, 𝑖 =  1, 2, . . . , 8) for each of the eight 
popula ons can be different. 

3 Posi vity and Boundedness  

To retain the biological validity of model 1, we must prove that the solu ons of the 
frac onal-order system (3) with the force of infec on are posi ve and bounded for 𝑡 > 0. 
Since the system monitors humans' and rodents' popula ons, all associated parameters are 
nonnega ve. We will now prove the posi vity and boundedness of the solu ons to ensure 
the system is mathema cally well-posed and biologically meaningful. 

Theorem1. 𝐿𝑒𝑡 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑆(0) > 0, 𝐸(0) > 0, 𝐼 (0) > 0, 𝐼 (0) > 0, 𝑇(0) > 0, 

𝑅(0) > 0, 𝑆 (0) > 0, 𝑎𝑛𝑑 𝐼 (0) > 0, 𝑡ℎ𝑒𝑛 𝑆(𝑡), 𝐸(𝑡),  𝐼 (𝑡),  𝐼 (𝑡), 𝑇(𝑡), 𝑅(𝑡), 𝑆 (𝑡) 𝑎𝑛𝑑         
 𝐼 (𝑡) 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 (1) 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0. 

Proof. Suppose 𝑆(𝑡) is not posi ve, then there exists a first me, say 𝑡∗ > 0, such that 𝑆(𝑡) >
0   for all 𝑡 ∈ [0, 𝑡∗) and 𝑆(𝑡∗) = 0. By inspec on of the equa on of 𝐸(𝑡), we have that  

𝐶𝐹 𝐸 ≥ −(𝜗 + 𝜇) 𝐸(𝑡), 𝑓𝑜𝑟  𝑡 ∈ [0, 𝑡∗),  

Hence, it follows that, 

                                           𝐸 > 0 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡∗). 

Thus, it is clear from the first equa on of model 1 that  

          𝐶𝐹 𝑆 ≥ −(𝜆
ℎ

+ 𝜇)𝑆(𝑡), 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡∗). 

It follows that 𝑆(𝑡∗) > 0 which contradicts 𝑆(𝑡∗) = 0. therefore, 𝑆(𝑡) is posi ve. Using similar 
approach as that for 𝑆(𝑡), it is easy to show that 𝐸(𝑡) > 0,  𝐼 (𝑡) > 0,  𝐼 (𝑡) > 0, 𝑇(𝑡) > 0,
𝑅(𝑡) > 0, 𝑆 (𝑡) > 0 𝑎𝑛𝑑  𝐼 (𝑡) > 0. Hence the proof. 

3.1 Invariant Region 

In order to retain the biological feasible region of frac onal-order system (3) we will be 
analysed in a biologically feasible region as follows. Consider the biologically feasible region 
consis ng of   

Ω = Ω × Ω ∈ ℝ × ℝ  with  

Ω = {𝑆, 𝐸,  𝐼 ,  𝐼 , 𝑇, 𝑅 ∈ ℝ  : 𝑁 ≤    } 

and 

Ω = { 𝑆 ,  𝐼 , ∈ ℝ  : 𝑁 ≤  } 
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It can be shown that the set Ω  is a posi vely invariant set and global a ractor of this system. 
This implies that any phase trajectory ini ated anywhere in the nonnega ve region ℝ  enters 
the feasible region  Ω and remains in  therea er. 

Lemma 1. The biological feasible region  Ω = Ω ∪ Ω ⊂ ℝ × ℝ  of the Lassa fever model 
(1) is posi vely invariant with nonnega ve ini al condi ons in ℝ . 

Proof The following steps are followed to establish the posi ve invariance of Ω  (i.e., solu ons 
in Ω  remain in Ω  for all 𝑡 > 0). The rate of change of the total human and rodent popula ons 
𝑁 and 𝑁  respec vely, are obtained by adding the respec ve components of frac onal-order 
system (3) which result to  

𝐶𝐹 𝑁ℎ(𝑡) = Π − 𝜇𝑁ℎ(𝑡) − {(𝛼1)𝐼1(𝑡) + (𝛼2)𝐼2(𝑡) + (𝛿)𝑇(𝑡)} 𝑎𝑛𝑑 

𝐶𝐹 𝑁𝑟(𝑡) = Λ − 𝜓𝑁𝑟(𝑡) 

so that,  

𝐶𝐹 𝑁ℎ(𝑡) ≤ Π − 𝜇𝑁ℎ(𝑡) 𝑎𝑛𝑑 𝐶𝐹 𝑁𝑟(𝑡)

≤ Λ − 𝜓𝑁𝑟(𝑡)                                                          (5) 

Hence, 𝑁 (𝑡) ≤ 𝜇𝑁 (0)𝑒  + (1 − 𝑒 ) 𝑎𝑛𝑑 𝑁 (𝑡) ≤ 𝜓𝑁 (0)𝑒  + 1 − 𝑒 .   

In par cular, 𝑁 (𝑡) ≤  𝑎𝑛𝑑 𝑁 (𝑡) ≤  +  if the total human and rodent popula on at the 

ini al instant of me, 𝑁 (0) ≤  𝑎𝑛𝑑 𝑁 (0) ≤  + , respec vely. So, the region Ω  is 

posi vely invariant. Thus, it is consequently adequate to consider the dynamics of Lassa fever 
governed by frac onal-order system (3) in the biological feasible region Ω , where the model 
is considered to be epidemiologically and mathema cally well posed. 

3.2 Existence and Stability of Lassa fever free equilibrium   

The Lassa fever-free equilibrium of the frac onal-order system (3) is obtained by finding the 
steady-state solu on in the absence of Lassa fever infec on. This involves se ng the right-
hand side of equa on (3) to zero and solving the resul ng algebraic equa ons simultaneously. 
We have 

 𝐶𝐹 𝑆 = Π − 𝜇𝑆 

𝐶𝐹 𝑆𝑟 = Λ − 𝜓𝑆𝑟 

And the the disease-free equilibrium state denoted by ℇ  is 

 ℇ = (𝑆∗, 𝐸∗, 𝐼 ∗, 𝐼 ∗, 𝑇∗, 𝑅∗, 𝑆∗, 𝐼∗) =

, 0,0,0,0,0, , 0                                                                  (6) 

3.3 Basic reproduc on number 

The next-genera on matrix method is used on system (3) for determining the reproduc on 
number ℛ . The epidemiological quan ty ℛ , called the reproduc on number, measures the 
typical number of Lassa fever cases that a Lassa fever-infected individual can generate in a 
human popula on that is completely suscep ble.  
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Using the nota on in [35], the matrices 𝐹 and 𝑉 for the new infec on teams and the remaining 
transfer or transi on teams are as follows 

Gain ⇒  𝐹 =  

0
0
0
0

𝛽
0
0
0

𝛽 𝜑
0
0
0

𝛽
0
0
𝛽

 

Losses ⇒  𝑉 =  

𝜗 + 𝜇
−𝜗𝜉

−𝜗(1 − 𝜉)
0

0
𝜇 + 𝛼 + 𝛾 + 𝜚

0
0

0
0

𝜇 + 𝛼 + 𝛾 + 𝜍
0

0
0
0
ψ

 

Thus, the basic reproduc on ℛ  of the model (3) is the spectral radius of the next-genera on 
matrix 𝐹𝑉 . It follows then that the associated reproduc on number, denoted by ℛ , is given 
by 

ℛ = ℛ + ℛ

=
𝑄 𝑄 𝑄 𝛽 + 𝑄 𝑄 𝜑ψ𝛽 + 𝑄 𝜗𝜉ψ𝛽

𝑄 𝑄 𝑄 ψ
                                                              (7) 

Where   

ℛ

=
𝛽 (𝑄 𝑄 𝜑 + 𝑄 𝜗𝜉)

𝑄 𝑄 𝑄
                                                                                                                       (8) 

ℛ

=
𝛽

ψ
                                                                                                                                                        (9) 

 With 𝑄 = (𝜗 + 𝜇), 𝑄 = (𝜇 + 𝛼 + 𝛾 + 𝜚), 𝑄 = 𝜗 − 𝜗𝜉, 𝑄 = (𝜇 + 𝛼 + 𝛾 +
𝜍) 𝑎𝑛𝑑 𝑄 = (𝜇 + 𝛿 +
𝛾 )                                                                                                                       (10)  

The threshold quan ty ℛ  given in (7) defined the quan ty ℛ  (the basic reproduc on 
number of human popula on) and ℛ  (the basic reproduc on number of rodent popula on) 
which measures the contribu on of Lassa fever risk caused by human and rodent popula on 
respec vely, it can be observed that the rise in any of the threshold quan ty results in the 
high risk of Lassa fever in the popula on.  

4 Existence and uniqueness of solu ons of the model  

Examine the existence and uniqueness of the solu ons of the Caputo– Fabrizio frac onal 
model for dynamics of Lass fever epidemic in Eq. (3) with ini al condi ons (4). Using fixed 
point theory [33, 34], we can prove the existence of solu ons for the model as follows 

Applying the Caputo–Fabrizio frac onal integral operator in both sides of Eq. (3), we have 

 𝑆(𝑡) − 𝑆(0) = 𝐶𝐹 [Π + ϕ𝑅 − (𝜆 + 𝜇)𝑆], 

 𝐸(𝑡) − 𝐸(0) = 𝐶𝐹 [𝜆 𝑆 − (𝜗 + 𝜇)𝐸],                                                                               

 𝐼 (𝑡) − 𝐼 (0) = 𝐶𝐹 [ 𝜗𝜉𝐸 − (𝛾 + 𝜚 + 𝜇 + 𝛼 )𝐼 ], 
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 𝐼 (𝑡) − 𝐼 (0) = 𝐶𝐹 [𝜗(1 − 𝜉)𝐸 − (𝛾 + 𝜍 + 𝜇 + 𝛼 )𝐼 ], 

 𝑇(𝑡) − 𝑇(0) = 𝐶𝐹 [𝜚𝐼 + 𝜍𝐼 − (𝛾 + 𝜇 + 𝛿)𝑇  ],                                                                  (11) 

 𝑅(𝑡) − 𝑅(0) = 𝐶𝐹 [𝛾 𝐼 + 𝛾 𝐼 + 𝛾 𝑇 − (ϕ + 𝜇)𝑅]                                                             

 𝑆 (𝑡) − 𝑆 (0) = 𝐶𝐹 [ Λ − (𝜆 + ψ)𝑆 ], 

 𝐼 (𝑡) − 𝐼 (0) = 𝐶𝐹 [𝜆 𝑆 − ψ𝐼 ], 

Then, the kernels of the model system can be wri en as follows 

 𝐾 (𝑡, 𝑠) = Π + ϕ𝑅 − (𝜆 + 𝜇)𝑆 , 

 𝐾 (𝑡, 𝐸) =  𝜆 𝑆(𝑡) − (𝜗 + 𝜇)𝐸(𝑡),                                       

𝐾 (𝑡, 𝐼 ) =  𝜗𝜉𝐸(𝑡) − (𝛾 + 𝜚 + 𝜇 + 𝛼 )𝐼 (𝑡), 

 𝐾 (𝑡, 𝐼 ) =  𝜗(1 − 𝜉)𝐸(𝑡) − (𝛾 + 𝜍 + 𝜇 + 𝛼 )𝐼 (𝑡),                                                               (12) 

 𝐾 (𝑡, 𝑇) = 𝜚𝐼 (𝑡) + 𝜍𝐼 (𝑡) − (𝛾 + 𝜇 + 𝛿)𝑇(𝑡), 

 𝐾 (𝑡, 𝑅) =  𝛾 𝐼 (𝑡) + 𝛾 𝐼 (𝑡) + 𝛾 𝑇(𝑡) − (ϕ + 𝜇)𝑅(𝑡),                                                                 

𝐾 (𝑡, 𝑆 ) =  Λ − (𝜆 + ψ)𝑆 (𝑡), 

 𝐾 (𝑡, 𝐼 ) = 𝜆 𝑆 (𝑡) − ψ𝐼 (𝑡), 

and the func ons 

 Λ(𝜌) =
( )

( ) ( )
  𝑎𝑛𝑑  Δ(𝜌) =

( ) ( )
                                                                               (13) 

In proving the following theorems, we will assume that 𝑆, 𝐸,  𝐼 ,  𝐼 , 𝑇, 𝑅, and  𝑆 ,  𝐼  are 
nonnega ve bounded func ons,           

i.e.,‖𝑆(𝑡)‖ ≤ 𝜃 , ‖𝐸(𝑡)‖ ≤ 𝜃 , ‖ 𝐼 (𝑡)‖ ≤ 𝜃 , ‖ 𝐼 (𝑡)‖ ≤ 𝜃 , ‖𝑇(𝑡)‖ ≤ 𝜃 , ‖𝑅(𝑡)‖ ≤
𝜃 , ‖ 𝑆 (𝑡)‖ ≤ 𝜃 𝑎𝑛𝑑  ‖ 𝐼 (𝑡)‖ ≤  𝜃   

𝑤ℎ𝑒𝑟𝑒 𝜃 , 𝜃 , 𝜃 , 𝜃 , 𝜃 , 𝜃 , 𝜃  𝑎𝑛𝑑 𝜃  are some posi ve constants. Denote 

 ℵ = 𝜆 + 𝜇, ℵ = 𝜗 + 𝜇,  ℵ = 𝜇 + 𝛾, ℵ = 𝛾 + 𝜚 + 𝜇 + 𝛼 , ℵ = 𝛾 + 𝜍 + 𝜇 + 𝛼 ,  ℵ =
𝜇 + 𝛾, ℵ = ψ 𝑎𝑛𝑑 ℵ = 𝜆 +
ψ,                                                                                                          (14) 

Applying the defini on of the Caputo–Fabrizio frac onal integral in Eq. (11), we obtain. 

 𝑆(𝑡) − 𝑆(0) = Λ(𝜌 )𝐾 (𝑡, 𝑆) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑆)𝑑𝑦, 

 𝐸(𝑡) − 𝐸(0) = Λ(𝜌 )𝐾 (𝑡, 𝐸) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝐸)𝑑𝑦,                                                                   

 𝐼 (𝑡) − 𝐼 (0) = Λ(𝜌 )𝐾 (𝑡, 𝐼 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝐼 )𝑑𝑦, 

 𝐼 (𝑡) − 𝐼 (0) = Λ(𝜌 )𝐾 (𝑡, 𝐼 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝐼 )𝑑𝑦, 

 𝑇(𝑡) − 𝑇(0) = Λ(𝜌 )𝐾 (𝑡, 𝑇) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑇)𝑑𝑦,                                                                  (15) 
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 𝑅(𝑡) − 𝑅(0) = Λ(𝜌 )𝐾 (𝑡, 𝑅) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑅)𝑑𝑦                                                             

 𝑆 (𝑡) − 𝑆 (0) = Λ(𝜌 )𝐾 (𝑡, 𝑆 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑆 )𝑑𝑦, 

 𝐼 (𝑡) − 𝐼 (0) = Λ(𝜌 )𝐾 (𝑡, 𝐼 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝐼 )𝑑𝑦, 

Theorem1:If the following inequality holds 0 ≤ 𝑀 = max{ℵ , ℵ , ℵ , ℵ , ℵ , ℵ , ℵ , ℵ } <
1(16) 

then the kernels 𝐾 , 𝐾 , 𝐾 , 𝐾 , 𝐾 , 𝐾 , 𝐾  𝑎𝑛𝑑 𝐾  sa sfy Lipschitz condi ons and are 
contrac on mappings.  

Proof. We consider the kernel 𝐾 . Let S and 𝑆  be any two func ons, then we have 

‖𝐾 (𝑡, 𝑆) − 𝐾 (𝑡, 𝑆 )‖ = ‖−𝜆 (𝑆(𝑡) − 𝑆 (𝑡)) − 𝜇(𝑆(𝑡) − 𝑆 (𝑡))‖                                      (17) 

Using the triangle inequality for norms on the right-hand side of Eq. (14), we obtain 

 ‖𝐾 (𝑡, 𝑆) − 𝐾 (𝑡, 𝑆 )‖ ≤ −𝜆 𝑆(𝑡) − 𝑆 (𝑡) + 𝜇 𝑆(𝑡) − 𝑆 (𝑡) ≤ (𝜆 + 𝜇)‖𝑆(𝑡) −
𝑆 (𝑡)‖ ≤ (𝜆 + 𝜇)‖𝑆(𝑡) − 𝑆 (𝑡)‖ = ℵ ‖𝑆(𝑡) − 𝑆 (𝑡)‖.                                         (18) 

Where ℵ  is defined in Eq. (12). Similar results for the kernels 𝐾 , 𝐾 , 𝐾 , 𝐾 , 𝐾 , 𝐾  𝑎𝑛𝑑 𝐾  can 
be obtained using {𝐸, 𝐸 }, 𝐼 , 𝐼 , 𝐼 , 𝐼 ,{𝑇, 𝑇 }, {𝑅, 𝑅 }, 𝑆 , 𝑆 𝑎𝑛𝑑 𝐼 , 𝐼 , respec vely, 
as follows: 

 

 ‖𝐾 (𝑡, 𝐸) − 𝐾 (𝑡, 𝐸 )‖ ≤ ℵ ‖𝐼(𝑡) − 𝐼 (𝑡)‖ 

𝐾 (𝑡, 𝐼 ) − 𝐾 𝑡, 𝐼 ≤ ℵ 𝐼 (𝑡) − 𝐼 (𝑡)                                                                            

 𝐾 (𝑡, 𝐼 ) − 𝐾 𝑡, 𝐼 ≤ ℵ ‖𝐼 (𝑡) − 𝐼 (𝑡)‖ 

B‖𝐾 (𝑡, 𝑇) − 𝐾 (𝑡, 𝑇 )‖ ≤ ℵ ‖𝑇(𝑡) − 𝑇 (𝑡)‖ 

‖𝐾 (𝑡, 𝑅) − 𝐾 (𝑡, 𝑅 )‖ ≤ ℵ ‖𝑅(𝑡) − 𝑅 (𝑡)‖                                                                           (19) 

 𝐾 (𝑡, 𝑆 ) − 𝐾 𝑡, 𝑆 ≤ ℵ 𝑆 (𝑡) − 𝑆 (𝑡)  

  𝐾 (𝑡, 𝑉) − 𝐾 𝑡, 𝐼 ≤ ℵ 𝑆 (𝑡) − 𝑆 (𝑡)  

 

where ℵ , ℵ , ℵ , ℵ , ℵ , ℵ , ℵ  𝑎𝑛𝑑 ℵ  are defined in Eq. (12). Therefore, the Lipschitz 
condi ons are sa sfied for 𝐾 , 𝐾 , 𝐾 , 𝐾 , 𝐾 , 𝐾  𝑎𝑛𝑑 𝐾 . In addi on, since 0 ≤ 𝑀 =
max{ℵ , ℵ , ℵ , ℵ , ℵ , ℵ , ℵ , ℵ } < 1, the kernels are contrac ons. From Eq. (15), the state 
variables can be displayed in terms of the kernels as follows: 

  𝑆(𝑡) = 𝑆(0) + Λ(𝜌 )𝐾 (𝑡, 𝑆) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑆)𝑑𝑦, 

 𝐸(𝑡) = 𝐸(0) + Λ(𝜌 )𝐾 (𝑡, 𝐸) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝐸)𝑑𝑦,                                                                   

 𝐼 (𝑡) = 𝐼 (0) + Λ(𝜌 )𝐾 (𝑡, 𝐼 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝐼 )𝑑𝑦, 

 𝐼 (𝑡) = 𝐼 (0) + Λ(𝜌 )𝐾 (𝑡, 𝐼 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝐼 )𝑑𝑦, 
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 𝑇(𝑡) = 𝑇(0) + Λ(𝜌 )𝐾 (𝑡, 𝑇) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑇)𝑑𝑦,                                                                  (20) 

 𝑅(𝑡) = 𝑅(0) + Λ(𝜌 )𝐾 (𝑡, 𝑅) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑅)𝑑𝑦                                                             

 𝑆 (𝑡) = 𝑆 (0) + Λ(𝜌 )𝐾 (𝑡, 𝑆 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑆 )𝑑𝑦, 

 𝐼 (𝑡) = 𝐼 (0) + Λ(𝜌 )𝐾 (𝑡, 𝐼 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝐼 )𝑑𝑦, 

Using Eq. (20), we now introduce the following recursive formulas: 

 𝑆 (𝑡) = Λ(𝜌 )𝐾 (𝑡, 𝑆 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑆 )𝑑𝑦, 

 𝐸 (𝑡) = Λ(𝜌 )𝐾 (𝑡, 𝐸 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝐸 )𝑑𝑦,                                                                   

 𝐼 (𝑡) = Λ(𝜌 )𝐾 𝑡, 𝐼( ) + Δ(𝜌 ) ∫ 𝐾 𝑦, 𝐼( ) 𝑑𝑦, 

 𝐼 (𝑡) = Λ(𝜌 )𝐾 𝑡, 𝐼( ) + Δ(𝜌 ) ∫ 𝐾 𝑦, 𝐼( ) 𝑑𝑦,                                                            (21) 

 𝑇 (𝑡) = Λ(𝜌 )𝐾 (𝑡, 𝑇 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑇 )𝑑𝑦,                                                                   

 𝑅 (𝑡) = Λ(𝜌 )𝐾 (𝑡, 𝑅 ) + Δ(𝜌 ) ∫ 𝐾 (𝑦, 𝑅 )𝑑𝑦                                                             

 𝑆 (𝑡) = Λ(𝜌 )𝐾 𝑡, 𝑆( ) + Δ(𝜌 ) ∫ 𝐾 𝑦, 𝑆( ) 𝑑𝑦, 

 𝐼 (𝑡) = Λ(𝜌 )𝐾 𝑡, 𝐼( ) + Δ(𝜌 ) ∫ 𝐾 𝑦, 𝐼( ) 𝑑𝑦, 

The ini al components of the above recursive formulas are determined by the given ini al 
condi ons as follows:  

 𝑆 (𝑡) = 𝑆(0), 𝐸 (𝑡) = 𝐸(0), 𝐼 (𝑡) = 𝐼 (0), 𝐼 (𝑡) = 𝐼 (0) 

 𝑇 (𝑡) = 𝑇(0), 𝑅 (𝑡) = 𝑅(0), 𝑆 (𝑡) = 𝑆 (0), 𝐼 (𝑡) = 𝐼 (0)                                        (22) 

The differences between the consecu ve terms for the recursive formulas can be wri en as 

Φ (𝑡) = 𝑆 (𝑡) − 𝑆 (𝑡)
= Λ(𝜌 )(𝐾 (𝑡, 𝑆 ) − 𝐾 (𝑡, 𝑆 ))

+ Δ(𝜌 ) (𝐾 𝑦, 𝑆 − 𝐾 (𝑡, 𝑆 ) 𝑑𝑦, 

Φ (𝑡) = 𝐸 (𝑡) − 𝐸 (𝑡)
= Λ(𝜌 )(𝐾 (𝑡, 𝐸 ) − 𝐾 (𝑡, 𝐸 ))

+ Δ(𝜌 ) (𝐾 𝑦, 𝐸 − 𝐾 (𝑡, 𝐸 ) 𝑑𝑦                                                             (23) 

Φ (𝑡) = 𝐼 (𝑡) − 𝐼

= Λ(𝜌 )(𝐾 𝑡, 𝐼 − 𝐾 𝑡, 𝐼 ) + Δ(𝜌 ) (𝐾 𝑦, 𝐼 − 𝐾 𝑡, 𝐼 𝑑𝑦, 

Φ (𝑡) = 𝐼 (𝑡) − 𝐼 (𝑡)

= Λ(𝜌 )(𝐾 𝑡, 𝐼 − 𝐾 𝑡, 𝐼 ) + Δ(𝜌 ) (𝐾 𝑦, 𝐼 − 𝐾 𝑡, 𝐼 𝑑𝑦, 
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Φ (𝑡) = 𝑇 (𝑡) − 𝑇 (𝑡)
= Λ(𝜌 )(𝐾 (𝑡, 𝑇 ) − 𝐾 (𝑡, 𝑇 ))

+ Δ(𝜌 ) (𝐾 𝑦, 𝑇 − 𝐾 (𝑡, 𝑇 ) 𝑑𝑦, 

Φ (𝑡) = 𝑅(𝑡) − 𝑅 (𝑡)
= Λ(𝜌 )(𝐾 (𝑡, 𝑅 ) − 𝐾 (𝑡, 𝑅 ))

+ Δ(𝜌 ) (𝐾 𝑦, 𝑅 − 𝐾 (𝑡, 𝑅 ) 𝑑𝑦, 

Φ (𝑡) = 𝑆 (𝑡) − 𝑆 (𝑡)

= Λ(𝜌 )(𝐾 𝑡, 𝑆 − 𝐾 𝑡, 𝑆 )

+ Δ(𝜌 ) (𝐾 𝑦, 𝑆 − 𝐾 𝑡, 𝑆 𝑑𝑦, 

Φ (𝑡) = 𝐼 (𝑡) − 𝐼 (𝑡)

= Λ(𝜌 )(𝐾 𝑡, 𝐼 − 𝐾 𝑡, 𝐼 ) + Δ(𝜌 ) (𝐾 𝑦, 𝐼 − 𝐾 𝑡, 𝐼 𝑑𝑦, 

For    𝑆 (𝑡) = ∑ Φ (𝑡),𝐸 (𝑡) = ∑ Φ (𝑡) , 𝐼1 (𝑡) = ∑ Φ (𝑡),𝐼2 (𝑡) = ∑ Φ (𝑡) 

,𝑇 (𝑡) = ∑ Φ (𝑡) ,  𝑅 (𝑡) = ∑ Φ (𝑡) , 𝑆𝑟 (𝑡) = ∑ Φ (𝑡),𝐼𝑟 (𝑡) =

∑ Φ (𝑡)  (24) 

 

Now let generate the recursive inequali es for the differences 
Φ , Φ , Φ , Φ , Φ , Φ , Φ  𝑎𝑛𝑑 Φ  as follows 

‖Φ (𝑡)‖ = ‖𝑆 (𝑡) − 𝑆 (𝑡)‖

= Λ(𝜌 )(𝐾 (𝑡, 𝑆 ) − 𝐾 (𝑡, 𝑆 ))

+ Δ(𝜌 ) (𝐾 𝑦, 𝑆

− 𝐾 (𝑡, 𝑆 ) 𝑑𝑦                                                                     (25) 

Using t triangle inequality for norms to Eq. (25), we have 

‖𝑆 (𝑡) − 𝑆 (𝑡)‖ = ‖Λ(𝜌 ) ∥ 𝐾 (𝑡, 𝑆 ) − 𝐾 (𝑡, 𝑆 )‖ +  Δ(𝜌 ) ∫ ‖𝐾 (𝑦, 𝑆 ) −

𝐾 (𝑡, 𝑆 )‖𝑑𝑦                                                                                                          

Then, since the kernel 𝐾  sa sfies the Lipschitz condi on with Lipschitz constant ℵ , we have 
 ‖𝑆 (𝑡) − 𝑆 (𝑡)‖ ≤ ‖Λ(𝜌 )ℵ ∥ 𝑆 − 𝑆 ‖ +  Δ(𝜌 )ℵ ∫ ‖𝑆 − 𝑆 ‖𝑑𝑦                      
(26) 

therefore, we have 

 ‖Φ (𝑡)‖ ≤ Λ(𝜌 )ℵ Φ ( )(𝑡) +

 Δ(𝜌 )ℵ ∫ Φ ( )(𝑦) 𝑑𝑦                                             (27) 

Following the same procedures, we have 
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 ‖Φ (𝑡)‖ ≤ Λ(𝜌 )ℵ Φ ( )(𝑡) +  Δ(𝜌 )ℵ ∫ Φ ( )(𝑦) 𝑑𝑦 

‖Φ (𝑡)‖ ≤ Λ(𝜌 )ℵ Φ ( )(𝑡) +  Δ(𝜌 )ℵ ∫ Φ ( )(𝑦) 𝑑𝑦                                                      
(28) 

 ‖Φ (𝑡)‖ ≤ Λ(𝜌 )ℵ Φ ( )(𝑡) +  Δ(𝜌 )ℵ ∫ Φ ( )(𝑦) 𝑑𝑦 

 ‖Φ (𝑡)‖ ≤ Λ(𝜌 )ℵ Φ ( )(𝑡) +  Δ(𝜌 )ℵ ∫ Φ ( )(𝑦) 𝑑𝑦 

 ‖Φ (𝑡)‖ ≤ Λ(𝜌 )ℵ Φ ( )(𝑡) +  Δ(𝜌 )ℵ ∫ Φ ( )(𝑦) 𝑑𝑦 

 ‖Φ (𝑡)‖ ≤ Λ(𝜌 )ℵ Φ ( )(𝑡) +  Δ(𝜌 )ℵ ∫ Φ ( )(𝑦) 𝑑𝑦 

 ‖Φ (𝑡)‖ ≤ Λ(𝜌 )ℵ Φ ( )(𝑡) +  Δ(𝜌 )ℵ ∫ Φ ( )(𝑦) 𝑑𝑦 

Theorem 5. If there exists a me 𝑡 > 0 such that the following inequali es hold:Λ(𝜌 )ℵ +
Δ(𝜌 ) ℵ 𝑡 > 1,     𝑓𝑜𝑟 𝑖 = 1,2, … ,8,                                                                                                              (29) 

then a system of solu ons exists for the frac onal Lassa fever model (3)– (4).  

Proof. Since the func ons 𝑆(𝑡), 𝐸(𝑡),  𝐼 (𝑡),  𝐼 (𝑡), 𝑇(𝑡), 𝑅(𝑡), 𝑆 (𝑡) 𝑎𝑛𝑑  𝐼 (𝑡) are assumed 
to be bounded and each of the kernels sa sfies a Lipschitz condi on, the following rela ons 
can be obtained. 

 Using Eqs. (27)– (28) recursively: 

 ‖Φ (𝑡)‖ ≤ ‖𝑆(0)‖[Λ(𝜌 )ℵ +  Δ(𝜌 )ℵ ]   

 ‖Φ (𝑡)‖ ≤ ‖𝐸(0)‖ [Λ(𝜌 )ℵ +  Δ(𝜌 )ℵ ]  

‖Φ (𝑡)‖ ≤ ‖ 𝐼 (0)‖[Λ(𝜌 )ℵ +  Δ(𝜌 )ℵ ]                                                                                         (30) 

 ‖Φ (𝑡)‖ ≤ ‖ 𝐼 (0)‖[Λ(𝜌 )ℵ +  Δ(𝜌 )ℵ ]  

 ‖Φ (𝑡)‖ ≤ ‖𝑇(0)‖[Λ(𝜌 )ℵ +  Δ(𝜌 )ℵ ]  

 ‖Φ (𝑡)‖ ≤ ‖𝑅(0)‖[Λ(𝜌 )ℵ +  Δ(𝜌 )ℵ ]  

 ‖Φ (𝑡)‖ ≤ ‖ 𝑆 (0)‖[Λ(𝜌 )ℵ +  Δ(𝜌 )ℵ ]  

 ‖Φ (𝑡)‖ ≤ ‖ 𝐼 (0)‖[Λ(𝜌 )ℵ +  Δ(𝜌 )ℵ ]  

Equa on (30) shows the existence and smoothness of the func ons defined in Eq. (25). To 
complete the proof, we prove that the func ons 
𝑆 (𝑡), 𝐸 (𝑡),  𝐼 (𝑡),  𝐼 (𝑡), 𝑇 (𝑡), 𝑅 (𝑡),  𝑆 (𝑡) 𝑎𝑛𝑑 𝐼 (𝑡) converge to a system of solu ons 
of (3)– (4). We introduce 𝐵 (𝑡), 𝐶 (𝑡),𝐸 (𝑡),  𝐹 (𝑡), 𝐺 (𝑡),𝐻(𝑡), 𝑈 (𝑡) 𝑎𝑛𝑑 𝑊 (𝑡), as the 
remainder terms a er 𝑛 itera ons, i.e., 

 𝑆(𝑡) − 𝑆(0) = 𝑆 (𝑡) − 𝐵 (𝑡), 

 𝐸(𝑡) − 𝐸(0) = 𝐸 (𝑡) − 𝐶 (𝑡),                                                                 

 𝐼 (𝑡) − 𝐼 (0) = 𝐼 (𝑡) − 𝐸 (𝑡), 

 𝐼 (𝑡) − 𝐼 (0) = 𝐼 (𝑡) − 𝐹 (𝑡),                                                                                                
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  𝑇(𝑡) − 𝑇(0) = 𝑇 (𝑡) − 𝐺 (𝑡),,                                                                                                  (31) 

 𝑅(𝑡) − 𝑅(0) = 𝑅 (𝑡) − 𝐻 (𝑡),                                                             

 𝑆 (𝑡) − 𝑆 (0) = 𝑆 (𝑡) − 𝑈 (𝑡), 

 𝐼 (𝑡) − 𝐼 (0) = 𝐼 (𝑡) − 𝑊 (𝑡), 

Then, using the triangle inequality and the Lipschitz condi on for 𝐾 , we have 

‖𝐵 (𝑡)‖ = Λ(𝜌 )(𝐾 (𝑡, 𝑆) − 𝐾 𝑡, 𝑆 ) ) +  Δ(𝜌 ) ∫ (𝐾 (𝑦, 𝑆) − 𝐾 (𝑦, 𝑆 ))𝑑𝑦 ≤

Λ(𝜌 )‖(𝐾 (𝑡, 𝑆) − 𝐾 (𝑡, 𝑆 )‖ +  Δ(𝜌 ) ∫ ‖𝐾 (𝑦, 𝑆) − 𝐾 (𝑦, 𝑆 )‖𝑑𝑦 ≤ Λ(𝜌 )ℵ ‖𝑆 −

𝑆 ‖ +  Δ(𝜌 )ℵ 𝐵 (𝑡)‖𝑆 − 𝑆 ‖𝑡. 

Repea ng same process, we have; 

‖𝐵 (𝑡)‖ ≤ [(Λ(𝜌 ) +  Δ(𝜌 )𝑡)ℵ ] 𝜃                                                                                       (32) 

At 𝑡  we have ‖𝐵 (𝑡)‖ ≤ [(Λ(𝜌 ) +  Δ(𝜌 )𝑡 )ℵ ] 𝜃                                                            (33)   

Taking the limit on Eq. (33) as 𝑛 → ∞ and then using condi on (29), we obtain‖𝐵 (𝑡)‖ → 0. 
Using the same process as described above, we have the following rela ons: 

‖𝐶 (𝑡)‖ ≤ [(Λ(𝜌 ) +  Δ(𝜌 )𝑡 )ℵ ] 𝜃                                                                                    (34) 

‖𝐸 (𝑡)‖ ≤ [(Λ(𝜌 ) +  Δ(𝜌 )𝑡 )ℵ ] 𝜃                                                                                    (35) 

‖𝐹 (𝑡)‖ ≤ [(Λ(𝜌 ) +  Δ(𝜌 )𝑡 )ℵ ] 𝜃                                                                                    (36) 

‖𝐺 (𝑡)‖ ≤ [(Λ(𝜌 ) +  Δ(𝜌 )𝑡 )ℵ ] 𝜃                                                                                    (37) 

‖𝐻 (𝑡)‖ ≤ [(Λ(𝜌 ) +  Δ(𝜌 )𝑡 )ℵ ] 𝜃                                                                                    (38) 

‖𝑈 (𝑡)‖ ≤ [(Λ(𝜌 ) +  Δ(𝜌 )𝑡 )ℵ ] 𝜃                                                                                    (39) 

‖𝑊 (𝑡)‖ ≤ [(Λ(𝜌 ) +  Δ(𝜌 )𝑡 )ℵ ] 𝜃                                                                                    (40) 

Similarly, taking the limit on Eqs. (34) − (40) as 𝑛 → ∞ and then using condi on (29), we 
have ‖𝐶 (𝑡)‖ → 0, ‖𝐸 (𝑡)‖ → 0 , ‖𝐹 (𝑡)‖ → 0, ‖𝐺 (𝑡)‖ → 0, ‖𝐻 (𝑡)‖ → 0, ‖𝑈 (𝑡)‖ →
0 𝑎𝑛𝑑 ‖𝑊 (𝑡)‖ → 0. Therefore, the existence of the system of solu ons of system (3)– (4) is 
proved.   

We now give condi ons for the system of solu ons to be unique.  

Theorem 6. System (3) along with the ini al condi ons (4) has a unique system of solu ons 
if the following condi ons hold: 1 − Λ(𝜌 )ℵ + Δ(𝜌 )ℵ 𝑡 > 0,     𝑓𝑜𝑟 𝑖 = 1,2, … ,8, ).                
(41)  

Proof. Assume that{{𝑆(𝑡), 𝐸(𝑡),  𝐼 (𝑡),  𝐼 (𝑡), 𝑇(𝑡), 𝑅(𝑡),  𝑆 (𝑡) ,  𝐼 (𝑡) }is another set of 
solu ons of model (3)– (4) in addi on to the solu on set 
{𝑆𝑆(𝑡), 𝐸(𝑡),  𝐼 (𝑡),  𝐼 (𝑡), 𝑇(𝑡), 𝑅(𝑡),  𝑆 (𝑡) ,  𝐼 (𝑡) } proved to exist in Theorems 4 and 5 then 

𝑆(𝑡) − 𝑆 (𝑡) = Λ(𝜌 )(𝐾 (𝑡, 𝑆) − 𝐾 (𝑡, 𝑆 ) + Δ(𝜌 ) ∫ (𝐾 (𝑦, 𝑆) − 𝐾 (𝑦, 𝑆 ))𝑑𝑦,                   (42) 

Taking the norm and triangle inequality on both sides of Eq. (38), we have  
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‖𝑆(𝑡) − 𝑆 (𝑡)‖ ≤ Λ(𝜌 )‖𝐾 (𝑡, 𝑆) − 𝐾 (𝑡, 𝑆 )‖ + Δ(𝜌 ) ∫ ‖(𝐾 (𝑦, 𝑆) − 𝐾 (𝑦, 𝑆 )‖                
 (43) 

Using the Lipschitz condi on for the kernel 𝐾 , we find 

‖𝑆(𝑡) − 𝑆 (𝑡)‖ ≤ Λ(𝜌 )ℵ ‖𝑆(𝑡) − 𝑆 (𝑡)‖ + Δ(𝜌 )ℵ 𝑡‖𝑆(𝑡) − 𝑆 (𝑡)‖                                     (44) 

If  Eq. (40) rearranging we obtain 

‖𝑆(𝑡) − 𝑆 (𝑡)‖1 − Λ(𝜌 )ℵ + Δ(𝜌 )ℵ 𝑡 ≤ 0                                                                             (45) 

Finally, applying condi on (41) for 𝑖 =  1 to Eq. (45), we obtain 

‖𝑆(𝑡) − 𝑆 (𝑡)‖ = 0                                                                                                                       (46) 

Hence  𝑆(𝑡) = 𝑆 (𝑡). 

Applying a similar procedure to each of the following pairs 

 (𝐸(𝑡), 𝐸 (𝑡)), (𝐼 (𝑡), 𝐼 (𝑡)) , (𝐼 (𝑡), 𝐼 (𝑡)), (𝑇(𝑡), 𝑇 (𝑡)) (𝑅(𝑡), 𝑅 (𝑡)), ( 𝑆 (𝑡),  𝑆 (𝑡))  

 𝑎𝑛𝑑  ( 𝐼 (𝑡),  𝐼 (𝑡)). 

with inequality (41) 𝑓𝑜𝑟 𝑖 = 1,2, … ,8, respec vely, we have 

  𝐸(𝑡) = 𝐸 (𝑡), 𝐼 (𝑡) = 𝐼 (𝑡) , 𝐼 (𝑡) = 𝐼 (𝑡), 𝑇(𝑡) = 𝑇 (𝑡), 𝑅(𝑡) = 𝑅 (𝑡),  

 𝑆 (𝑡) =  𝑆 (𝑡) 𝑎𝑛𝑑   𝐼 (𝑡) =  𝐼 (𝑡).                                                                            (47) 

Thus, the uniqueness of the system of solu ons of the frac onal order system is proved. 

5 Data fi ng and sensi vity analysis and parameter es ma on 

To es mate the remaining parameter values of our Lassa fever model (1), we applied the 
model to the cumula ve number of reported cases from 2019 to 2021, provided by the Nigeria 
Centre for Disease Control. We developed a MATLAB program using ODE45 solvers and 
employed model data fi ng techniques through conven onal nonlinear least squares 
methods, as shown in Table 3. Figure 2 provides a pictorial representa on of the data fi ng 
for the model using the cumula ve confirmed cases. 

Using the parameter values obtained from data fi ng, we conducted sensi vity analyses to 
assess the impact of different parameters on Lassa fever dynamics within the popula on. This 
approach enabled us to simulate various scenarios, providing insights into the poten al 
outcomes and effec veness of different interven on strategies. 
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Figure 2. Data fi ng of the Lassa fever model (1) using cumula ve confirmed cases in  

Parameter 
 

Descriptions Value  Source 

Π  Rate of recruitment of susceptible human  68088 [37] 
Λ 

 
Rate of recruitment of susceptible mastomys rat’s  557 [37] 

𝜇  Natural death rate of human  0.000053  
 

[37] 

ψ Natural death rate of mastomyns rat,  0.003 [36] 
𝜙 Rate at which immunity wanes after recovery 0.7246 fitted 
𝛾  Recovery rate of infected human population  0.7194 fitted 
𝛾  Recovery rate of infected treated human population 0.7285 fitted 
𝛾  Recovery rate of infectious deceased human 

population 
1.5472 fitted 

        𝛼  Disease induced death rates of individuals in 𝐼 (𝑡) 0.484 [36] 
          𝛼  Disease induced death rates of individuals in 𝐼 (𝑡) 0.484 [36] 

𝛿 Disease induced death rate of infected individuals in 
𝑇(𝑡) compartment 

0.8 [36] 

𝜍 Rates at which infected deceased move to 
treatment class, 
 

0.4325 fitted 

𝜚 Rates at which infected humans move to treatment 
class 

0.7774 fitted 

𝜉 Proportion of new exposed individual that become 
symptomatically infected 

0.4182 fitted 

𝜗 Rate at which an exposed individual becomes 
infectious 

1.7169 fitted 

𝜑 Transmission rates due to contact with infected 
deceased  

0.4955 fitted 

𝛽  Rate of human-to-human contact  0.1682 fitted 
𝛽  Rate of Mastomys rat-to-human contact  0.0071 fitted 
𝛽  Rate of Mastomys rat-to-mastomys rat contact  0.0209 fitted 

Table 3. Parameter values for the Lassa fever model (1) 
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6 Sensi vity analysis  

Mathema cal modeling of infec ous diseases aims to understand how diseases spread in a 
popula on (Panovska-Griffiths, 2020). Sensi vity analysis is a key technique used to gain 
insights into disease dynamics by evalua ng the impact of different parameters on the model. 
In this study, we used Par al Rank Correla on Coefficients (PRCC) within MATLAB R2022b to 
iden fy the most sensi ve epidemiological parameters for controlling the Lassa fever (LF) 
outbreak (Musa et al., 2020). 

Our analysis focused on how varia ons in each parameter affect the reproduc on number, 
which helps in developing interven on strategies to control the spread of the disease. The 
sensi vity indices and parameter values are illustrated in Figure 3. The analysis revealed that 
posi ve values for parameters 𝜑 , 𝜗, 𝜉, 𝛽  , 𝛽  𝑎𝑛𝑑 Λ were associated with an increased 
spread of Lassa fever. Conversely, a decrease in the nega ve values of parameters Π, 𝛾 , 𝛾 , 𝛾 , 
𝜍 and 𝜚   was linked to a rise in transmission rates. The sensi vity indices showed that the 
natural mortality rate of rats ψ and the rodent-to-rodent transmission rate 𝛽  had the most 
significant effects. An increase in 𝛽 results in a higher reproduc on number, while an increase 
in ψ leads to a reduc on in the rat popula on. 

 

 
Figure 3. Sensi vity indices of the Lassa fever reproduc on number using par al rank correla on    coefficient (PRCC)  

 

In conclusion, effec ve control measures should focus on reducing transmission likelihood and 
the rate of rat popula on recruitment. Strategies to achieve this include avoiding contact with 
infected corpses (through safe burial prac ces), promo ng good hygiene, conduc ng 
educa onal campaigns, and using rodent traps or pes cides. These measures can significantly 
reduce the spread of Lassa fever among people. 

7  Numerical computa on 

We now present the numerical results and simula ons of the extended frac onal order 
mathema cal model in Caputo sense with the help of the derived algorithm and numerical 
coded wri en in MATLAB environment using the model equa ons and the values of the 
parameters in table 3. 
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            Fig. 
1: Numerical Simula on of S(t) at different values of alpha   Fig. 2: Numerical Simula on of I(t) at different 
values of alpha 

            

             
Fig. 3: Numerical Simula on of R(t) at different values of alpha                        Fig. 4: Numerical Simula on of D(t) at different values of alpha 

  

8  Result and discussion 

In this paper, the dynamics of Lassa fever virus model are examined via Caputo–Fabrizio 
frac onal order differen al equa on model approaches: Varying the values of frac onal-order 
α for the FODE, Due to the lack of any disease control measures, the number of suscep ble 
and infected popula on drama cally increases (see Figure  1), since both the suscep ble and 
infected popula on live together in the environment that serves as a breeding ground for the 
bacteria and ac vely interact among themselves, Moreover, we can easily observe from  
Figure 6 and 7 that when 𝛼 → 1 the Caputo–Fabrizio non-integer order deriva ve reveals more 
absorbing characteris cs. Consequently, this causes the Lassa fever virus dynamic to stay at 
almost a constant rate for a long period of me (see Figures 2 and 4). However, the effect of 
increasing or decreasing infec ous contact with environment in model (1) at different values 
of alpha in figure 3 indicate the vulnerability of all state variables.  

9  Conclusion 

In this paper, we examined the interac on between human and rodent hosts by formula ng 
a non-linear determinis c mathema cal model to describe the transmission dynamics of 
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Lassa fever, using demographic data from Nigeria. This model was extended to an integer type 
using the Caputo–Fabrizio frac onal differen al equa on and analyzed using fixed point 
theory and an itera ve method. The frac onal model employs non-singular, exponen ally 
decreasing kernels from the Caputo–Fabrizio frac onal deriva ve, and we established the 
existence and uniqueness of solu ons for the system. We iden fied the equilibrium points of 
the model and determined the condi ons for local asympto c stability of the disease-free 
equilibrium point. Numerical solu ons of the frac onal system were obtained and compared 
for different values of the frac onal order, exploring the use of the Caputo–Fabrizio frac onal 
deriva ve in modeling real-life problems involving memory effects. 

The model was parameterized using cumula ve confirmed cases of Lassa fever in Nigeria from 
January 2019 to December 2021, obtained from the Nigeria Centre for Disease Control 
database. Sensi vity analysis was conducted to evaluate the significance of each parameter 
on the transmission dynamics of Lassa fever in Nigeria. The analysis iden fied the transmission 
coefficients Λ, 𝜚, 𝜍, 𝜑 𝛽 , 𝛽  𝑎𝑛𝑑 𝛽  as cri cal control parameters influencing the transmission 
of Lassa fever. The basic reproduc on number,  𝑅 , was found to be greater than one ( 𝑅 >
1) , sugges ng that Lassa fever is likely to remain endemic in Nigeria unless effec ve control 
methods are implemented to reduce  𝑅  below unity. 

Our study explored the impact of controlled parameters on the total infected human and 
deceased popula ons. The results indicate that combining all possible transmission control 
measures significantly reduces the burden of Lassa fever more quickly in the popula on. Early 
treatment of infected individuals, personal hygiene, precau ons by health workers, proper 
burial prac ces, educa onal campaigns, and the use of pes cides and rodent traps are 
essen al strategies for reducing the number of infected individuals and containing the spread 
of Lassa fever in Nigeria. 
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