Network for Research and Development in Africa
International Journal of Pure and Applied Science Research
ISSN: 2384-5918, Volume 11, Issue 13

PP 85-106 (August, 2024)

DOI: 45727711-11138

arcnjournals@gmail.com

https://arcnjournals.org

Fractional Mathematical Model for Simulating the Dynamics
of Lassa Fever Virus in Nigeria With Control Strategies

1Abdullahi M. Auwal 2Salisu Usaini and 3Umar Faruk Abbas

L3Mathematics and Statistics Department, Federal Polytechnics Bauchi

Abstract: in this paper we extended mathematical models that were based on integer order derivatives to
fractional order derivatives, we formulate and analyzed fractional mathematical modelling of dynamics of Lassa
fever epidemic which includes both infected deceased and treatment compartments via Caputo sense. We proved
that the propose mathematical model is biological and meaningfully well-posed. We also compute the basic
reproduction number via next generation method. The Lassa fever-free equilibrium & is the only local asymptotic
stable equilibrium if Ry, < 1 and it is not stable when Ry, > 1. Sensitivity analysis of the model parameters
indicates that 1 and f33 are the basic control parameters associated with persistence or eradication of Lassa
fever virus. More precisely, there is an inverse relationship between R, and . In a similar note, increasing
(decreasing) the value of B3 keeping all other parameters fixed increases (decreases) the value of R,. We can
infer from this result that good environmental sanitation and fumigation would reduce rodents’ population
thereby reducing the value of B5; which leads to the decrease of R,. The existence and uniqueness of the solution
of proposed FODE are established through the fixed-point theory. The numerical results and simulations of the
extended fractional order mathematical model were explored in Caputo sense.

Keywords: Lassa fever virus; threshold parameters; model fitting; Sensitivity analysis; Control Parameters; Caputo
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1 Introduction

Lassa fever is also called Lassa hemorrhagic fever, is an infectious disease and a zoonotic viral
illness instigated by the Lassa virus, a single-stranded RNA virus from the Arenaviridae family
[1, 2]. The mastomys natalensis which known as a multimammate rat is the main host of this
virus that is dominant in Sub-Saharan African as one of the most common rodent species [3—
5]. the viral particle responsible for cause of Lassa fever was first identified in 1969 at Borno
state northern region of Nigeria. However, the yearly estimated incidence in eastern and
western regions of West Africa ranges from a hundred to three hundred thousand cases with
nearly five thousand deaths [6—8] this momentum necessitated the Centers for Disease
Control and Prevention (CDC) and World Health Organization (WHO) to declared Lassa fever
as endemic and a health challenge in Western African Accordingly. The countries at the high-
risk for Lassa fever (belt) include Liberia, Guinea, Sierra Leone, and Nigeria [6, 9-11]. the
largest epidemic was reported to be in Nigeria, with report of many outbreaks from the
aforementioned countries over the years. The largest outbreak of Lassa fever that swept
through eighteen out of the thirty-six states of the country is reported to be in Nigeria, with
over 400 confirmed cases were reported [12].
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Although, the yearly increase of cases of Lassa virus has to do with various factor such as
insufficient health facilities, polluted environment, and poor personal hygiene, to gather with
the ecological climate factor rainfall and movement of harvested food into our communities.
These activities are associated with an improve or increase in the host reservoir (mastomys
rodents) to migrate from their natural habitation to the human environment, a reduce or
diminished in the prevalence of Lassa fever is rely upon on human efforts in reducing the
transmission proportion of this disease [3, 14].

Lassa fever has an incubation period between 6 and 21 days, hence, following this exposure
period, infected humans are expected to start showing symptoms of the disease. Although
about eighty percent of infected humans have only slight symptoms such as headaches,
cough, muscle pain, sore throat, weakness, and fever. However, in severe cases, an infected
human can develop more complications such as facial swelling, bleeding from the nose,
respiratory distress, and low blood pressure [2, 11]. In a more critical situation, this disease
can lead to death within fourteen days after the first appearance of the symptoms, due to
neurological problems [2]. The Lassa virus is primarily spread to humans through human
contact with food or substances that are contaminated by the urine or feces of an infected
rodent [9], while secondary infection from human-to-human and laboratory transmissions are
likewise possible [10]. Due to the absence of a vaccine against Lassa fever, prevention against
infection has an important role in controlling the transmission of this disease in the
population. Currently, since the eradication of mastomys rodent population is unrealistic, the
present ways of avoiding the spread of this infection include the facilitation of good personal
hygiene to avoid contact with infected rodents’ secretions or excretions, and implementation
of standard health facilities for effective testing, diagnosing and treatment of patients [10].

Literature revel that there is no confirmed cure or vaccine exists for Lassa fever yet, however,
ribavirin is an antiviral drug that has been declared as an effective treatment for Lassa fever
patients, if administered at the premature period of the infection [7, 9]. Consequently, the
transmission dynamics of the virus is still not yet fully comprehended limited and far from
being complete. Therefore, it is then important to urgently conduct various researches and
explore new methods and techniques, which can help to better understanding of the outbreak
process and controlling the spread of the virus.

Over the decade, mathematical models have become vital tools in studying the dynamics of
diseases in a given population. The recent development of the use of mathematical models
such as [2], has been developed for numerous diseases, to answer specific questions in an
attempt to contribute to the understanding of the epidemiology of such disease under study.
More specifically, studies have been carried out to further provide information on the
transmission dynamics of Lassa fever (see [3, 7-9, 14]).

Mathematical model and simulation are a practical essential tool that helps us to improve our
understanding of the real world [16]. It can help to determine the characteristics and
magnitude of epidemic disease transmission, to predict its outbreak and to see which
parameters are more influential in the dynamics of the disease

In recent decades, many physical problems have been modeled using the fractional calculus.
The main reasons given for using fractional derivative models are that many systems show
memory, history, or nonlocal effects, which can be difficult to model using integer order
derivatives. The main reasons given for using fractional derivative models are that many
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systems show memory, history, or nonlocal effects, which can be difficult to model using
integer order derivatives. The basic theory and applications of fractional calculus and
fractional differential equations can now be found in many studies (see, e.g., [15-19]).
Although most of the early studies were based on the use of the Riemann-—Liouville fractional
order derivative or the Caputo fractional order derivative, it has been pointed out recently
that these derivatives have the problem that their kernels have a singularity that occurs at the
end point of an interval of definition. As a result, many new definitions of fractional derivatives
have now been proposed in the literature (see, e.g., [20-28]). The fundamental differences
among the fractional derivatives are their different kernels which can be selected to meet the
requirements of different applications. For example, the main differences between the Caputo
fractional derivative [16], the Caputo—Fabrizio derivative [22], and the Atangana— Baleanu
fractional derivative [30] are that the Caputo derivative is defined using a power law, the
Caputo—Fabrizio derivative is defined using an exponential decay law, and the Atangana—
Baleanu derivative is defined using a Mittag—Leffler law. Examples of the applications of the
new fractional operators to real world problems have been given in a number of recent
papers. For example, Tateishi et al. [24] have compared the classical and new fractional time-
derivatives in a study of anomalous diffusion. Also, Atangana have compared the Caputo—
Fabrizio fractional derivative and the Atangana—Baleanu fractional derivative in modeling
fractional delay differential equations [29] and in modeling chaotic systems [29]. They found
that the power law derivative of the Riemann—-Liouville fractional derivative or the Caputo—
Fabrizio fractional derivative provides noisy information due to its specific memory properties.
However, the Caputo—Fabrizio fractional derivative gives less noise than the power law one
while the Atangana—Baleanu fractional derivative provides an excellent description.

Therefore, the novel feature of this research is to broaden existing knowledge by develop and
formulates ordinary differential equations (integer-order derivatives) and extend it to the
fractional differential equations (non integer-order derivatives) for the mathematical model
of the dynamic of Lassa fever by incorporating treatment, environment contamination and
infectious deceased population compartments, that will percipience the disease spread or
control strategy, using Sensitivity analysis and numerical simulation of the model parameter
values base on demographic data of Nigeria.

2 The Mathematical model description, formulation and analysis
2.1 model description

A mathematical model of Lassa fever virus by in cooperating infectious deceased
compartment with treatment is introduced. The total human population N (t) is divided into
six compartments, namely, S(t) represents the number of susceptible individuals, E(t)
represents the number of exposed individuals in the stage of Lassa fever virus infection, I, (t)
represents the number of infected population, I,(t) represents the number of Infected
deceased population (Individuals that contracted the disease through corpse or death
infectious human), T (t) represents the number of individuals being treated; R(t) represents
the number of individuals who have recovered and N,.(t) is divided into two compartments,
namely, S,(t) represents the number of Susceptible mastomys rats, I;(t) represents the
number of Infected mastomys rats.

This study, engross on the effects of multiple transmission pathways of Lassa Fever concerning
the progression of the infection in the human and rodent population. The use of multiple
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transmission routes may give us a better understanding of the epidemiological structure of
Lassa fever. Thus, the proposed model is formulated based on the following assumption.

(a)
(b)

(c)
(d)

(e)

Hence,

There is homogeneous mixing of members of the population under consideration.
The dynamics outbreaks of Lassa fever in Africa (Nigeria) on yearly bases for relatively
long period of time, allow a demographic process to take place as result of new
additional inflow of new births and migration as well as deaths (natural or due to
disease).

Deceased individuals can still transmit the infection to susceptible populations before
and during burial/funerals arrangement or ceremonies.

Mostly poor resource countries are vulnerable to environmental transmission of the
Lassa fever virus, due to the fact that environmental contribution is one of the
essential factors enhancing the transmission process.

Environmental contamination occurs when Mastomys rats shed the virus through
urine or faeces. Consequently, direct contact with virus infested materials, through
touching of soiled household objects, eating contaminated food, or exposure to open
wounds or sores, can lead to infection, similarly infection may occur during rodents
capture and grooming as Mastomys rats are sometimes consumed as a source of
food.

the total human population and rodent’s population are N,(t) = S(t) +

E(t)+I1,(t)+1,(t) + T(t) + R(t), and N,(t) = S,(t)+I.(t) respectively. Therefore, the
pictorial diagrammatical representation of the model is shown in Fig. 1. According to Fig. 1,
we have following model equations:

JE (u+a)n
A
HUMANS
aiE

__¢R
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Figure 1. Flow Diagram of the Model 1
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Description of the state variables and the parameters of the flow chart model

Symbol of the Variable Description
S(t) Susceptible human individuals
E(t) Exposed human individuals
I, (t) Infected human individuals
I,(t) Infected deceased individuals n
R(t) Recovery human individuals
T(t) Treatment human individuals
S, (t) Susceptible mastomys rats
I.(t) Infected mastomys rats

Table 1. The state variables of the flow chart model system

Symbol of the Descriptions
Parameters
I1 Rate of recruitment of susceptible human population
A Rate of recruitment of susceptible mastomys rat’s population
uw,y Natural death rate of human and mastomyns rat, respectively
[0) Rate at which immunity wanes after recovery
Y1, Y2 andy; Recovery rate of infected, treated and infectious deceased human, respectively
a; and a, Disease induced death rates of individuals in I; (t) and I,(t), respectively
1) Disease induced death rate of infected individuals in T(t) compartment
0,6, Rates at which infected humans & infected deceased move to treatment class,
respectively
&e(0,1) Proportion of new exposed individual that become symptomatically infected
9 Rate at which an exposed individual becomes infectious
[0 Transmission rates due to contact with infected deceased population (1) relative to
the transmission rate due to infectious human corpse yet to be buried
By The human-to-human contact rate
B, Mastomys rat-to-human contact rate
Bs Mastomys rat-to-mastomys rat contact rate

Table 2. The parameters of the flow chart model system

2.2 Model Formulation

From the flow chart in figure 1. and the model assumptions, the following system of integer
order Ordinary differential equation (ODEs) is the required model.

ds
— =T+ ¢R— Ay + WS

dt
dE

— =145 — (9 +WE

dt
dl,

——=%WE—-(y1toetu+a)

dt

dt

dl
—=9(1-DE-(+c+u
+ ax)l, D
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dT
——=0oh+¢hL— (3 +u+8)T

dt
dR
P Yili + v2l; + vsT — (b + w)R
ds,
dl,
dt =4S — Yl
With
Iy + ol,) + B,1 I
/1h=Bl(1 <§7V2) B21; and Ar:ﬁ;lr 2
h r

where [3; is the effective contact rate for human-to-human transmission. 5, is a mastomys rat-
to-human effective contact rate, and 3 as mastomys rat-to-mastomys rat contact rate.
Consequently, the parameters ¢ is a modification parameter which measures transmissibility
reduction of infected deceased population (1,).

2.3 Caputo-Fabrizio fractional model for transmission dynamics of Lassa fever

Many new definitions of fractional order derivatives have been proposed and used to develop
and analyze mathematical models for a wide variety of real-life problems, and the advantages
of memory, history, or nonlocal effects of fractional order derivatives motivated this research
work. Consequently, Caputo and Fabrizio [22] recently developed a new fractional order
derivative without any singularity in its kernel which accurately describe the memory effect in
a real-life problem. The kernel of the new fractional derivative has the form of an exponential
function. More recently, Losada and Nieto [23] derived the fractional integral associated with
the new fractional Caputo—Fabrizio fractional derivative.

Now replacing the first-order time derivatives of the left-hand side of (1) by the fractional
Caputo—Fabrizio derivative we obtain our new fractional derivative model (Caputo—Fabrizio
fractional model for dynamics of Lassa fever epidemic mode) as follows:

CFpPS =T+ ¢R — (A, + WS
CFpPE = 2,8 — (9 + WE
CFpll, = 9¢E — (v, + o + u+ )l
CFpll, =9(1 —E - (v, + ¢+ u+ a)l,
CFpPT =gl +¢l, — (y3 + u+ 6T 3)
CFpPR = y Iy +v,I; +v,T — (b + WR
CFpPs, = A— (A + 1)S,

CFDfIr = ArSr - Lp]r
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where CFDé)represents the Caputo-Fabrizio fractional derivative of order 0 < pi < 1, with the
non-negative initial conditions

S(O) = So, E(O) = EOI 11(0) = 110112(0) = IZQIT(O) = TO'R(O) = RO !T(O) = STO'IT(O) =
Iy (4)

We assume that the fractional orders (0 < pi < 1, i = 1,2,...,8) for each of the eight
populations can be different.

3 Positivity and Boundedness

To retain the biological validity of model 1, we must prove that the solutions of the
fractional-order system (3) with the force of infection are positive and bounded for t > 0.
Since the system monitors humans' and rodents' populations, all associated parameters are
nonnegative. We will now prove the positivity and boundedness of the solutions to ensure
the system is mathematically well-posed and biologically meaningful.

Theoreml. Let the initial coditions S(0) > 0,E(0) > 0,1;(0) > 0,1,(0) > 0,T(0) > 0,

R(0) > 0,5,(0) >0, and I,.(0) > 0,then S(t),E(t), I,(t), I,(t),T(t), R(t), S,(t) and
I.(t) of the model (1) are positive for all t = 0.

Proof. Suppose S(t) is not positive, then there exists a first time, say t* > 0, such that S(t) >
0 forallt €[0,t*) and S(t*) = 0. By inspection of the equation of E(t), we have that

CFpPE = —(9 + 1) E(t), for t € [0,17),
Hence, it follows that,
E>0forte][0,t").
Thus, it is clear from the first equation of model 1 that
CFpPs = —(A, + wS(), fort € [0, 7).

It follows that S(t*) > 0 which contradicts S(t*) = 0. therefore, S(t) is positive. Using similar
approach as that for S(t), it is easy to show that E(t) > 0, I;(t) > 0, I,(t) > 0,T(t) > 0,
R(t) >0, S,.(t) > 0and I.(t) > 0. Hence the proof.

3.1 Invariant Region

In order to retain the biological feasible region of fractional-order system (3) we will be
analysed in a biologically feasible region as follows. Consider the biologically feasible region
consisting of

Q =0, x0, € RS x R2 with
Q, ={S,E I, ,,T,R €RS: N, s% }
and

Q, ={S,, I,eR2:N, <=}

<>
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It can be shown that the set ) is a positively invariant set and global attractor of this system.
This implies that any phase trajectory initiated anywhere in the nonnegative region R% enters
the feasible region () and remains in thereafter.

Lemma 1. The biological feasible region Q = Q, U Q, c R X R2 of the Lassa fever model
(1) is positively invariant with nonnegative initial conditions in R&.

Proof The following steps are followed to establish the positive invariance of Q (i.e., solutions
in Q remainin Q for all t > 0). The rate of change of the total human and rodent populations
Nypand N, respectively, are obtained by adding the respective components of fractional-order
system (3) which result to

CFDho(t) =1 —uN,(t) — {(a)1;(t) + (a,)1,(t) + (6)T(t)} and
CFp{N.(8) = A = YN, (t)
so that,
CFp? N, () < 11— uN,(t) and CFpPN, (1)
< A=9PN,(t) (5)
Hence, Nj,(t) < uN,(0)eHt + g (1 — e~ and N,(t) < YN, (0)e¥t + % (1-evo).

In particular, N, (t) < E and N,(t) < +% if the total human and rodent population at the
initial instant of time, N;(0) S% and N,.(0) < +%, respectively. So, the region Q is

positively invariant. Thus, it is consequently adequate to consider the dynamics of Lassa fever
governed by fractional-order system (3) in the biological feasible region (), where the model
is considered to be epidemiologically and mathematically well posed.

3.2 Existence and Stability of Lassa fever free equilibrium

The Lassa fever-free equilibrium of the fractional-order system (3) is obtained by finding the
steady-state solution in the absence of Lassa fever infection. This involves setting the right-
hand side of equation (3) to zero and solving the resulting algebraic equations simultaneously.
We have

CFpPS=T-uS
CFpPs, = A—ys,
And the the disease-free equilibrium state denoted by & is
EO = (S*I E*I Il*l IZ*i T*l R*l ST*l I:) =
(£,0,0,0,00,2,0) (6)
#l ) vy 1!)’
3.3 Basic reproduction number

The next-generation matrix method is used on system (3) for determining the reproduction
number R,. The epidemiological quantity R, called the reproduction number, measures the
typical number of Lassa fever cases that a Lassa fever-infected individual can generate in a
human population that is completely susceptible.
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Using the notation in [35], the matrices F and V for the new infection teams and the remaining
transfer or transition teams are as follows

0 p1 Bio B
. (o 0o o O
Gain> F = 0 0 0 0
0 0 0 ps
9+ 0 0 0
—9¢ pta+y,+e 0 0
L V=
osses = —9(1 - &) 0 pta+y,+¢ 0
0 0 0 }

Thus, the basic reproduction R, of the model (3) is the spectral radius of the next-generation
matrix FV 1. It follows then that the associated reproduction number, denoted by R, is given
by

Ro = Ron + Ror
_ Q1020483 + Q2Q30WB; + QWS

010,050 (7

Where
O (02050 + 0456)
_ p1(Q039 + Q4
B Q10204 ®
:ROr

B3
7 9

v 9
With Q=0O+w), Q;=W+a;+y1+0),Q=9-9, Qu=@U+a,+y, +
¢)and Qs = (u+6 +
¥s) (10)

The threshold quantity R, given in (7) defined the quantity R; (the basic reproduction
number of human population) and R, (the basic reproduction number of rodent population)
which measures the contribution of Lassa fever risk caused by human and rodent population
respectively, it can be observed that the rise in any of the threshold quantity results in the
high risk of Lassa fever in the population.

4 Existence and uniqueness of solutions of the model

Examine the existence and uniqueness of the solutions of the Caputo— Fabrizio fractional
model for dynamics of Lass fever epidemic in Eqg. (3) with initial conditions (4). Using fixed
point theory [33, 34], we can prove the existence of solutions for the model as follows

Applying the Caputo—Fabrizio fractional integral operator in both sides of Eq. (3), we have
$(®) = S(0) = CRY T+ R — (An + W)S],
E(t) — E(0) = CFP*[2,S — (@ + WE],

L(®) —1,(0) = CEP[9¢E — (v, + 0 + u+ ay) 1],
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L) = L(0) = CRY (A - OE = (rz + g + 1 + az)La],

T(t) = T(0) = CF,?°[oly + ¢, — (ys + u + )T |, (11)
R(t) = R(0) = CF°[y1ls + v21, + 73T — (¢ + wR]

$; (1) = 5,(0) = CF{[ A= (A + W)S;],

1) = 1,(0) = CF{°[A.S, — Wl ],

Then, the kernels of the model system can be written as follows

Ki(t,s) =1+ bR — (A, + 1)S,

K,(t,E) = ApS(t) — (9 + WE),

Ks(t, 1) = 9SE(t) = (1 + o + u+ a)L (D),

Ko(t, 1) = 9(1 = E@) — (r2 + ¢+ + az)[:(0), (12)
Ks(@t,T) = ol (t) + ¢, (8) = (y3 + u+ 6T (D),

Ke(t,R) = y1ili(t) +v21,(t) + y3T () — (b + )R (1),

K;t, ;) = A= (4 +W)S, (),

Kg(t,1;) = 2,S:(t) — W.(0),

and the functions

__2(1-p) __ 2
Ap) = o @ A0 = e (13)

In proving the following theorems, we will assume that S,E, I;, I,,T,R, and S, I, are
nonnegative bounded functions,

e, ISONl < 61, IEDI < 62, | LON < 63, | O] < 64, ITOIl < 05, IR <
O, 1| Sy (DIl < 67and || I ()| < 6

where 0,,0,,03,0,, 05,086, 0, and 64 are some positive constants. Denote

Ry = +u,R =0+u, Rg=u+y,Xy=y;+to+puta,Rs=y, +¢+putaz g =
u+y, R, =dand Rg =4, +
P, (14)

Applying the definition of the Caputo—Fabrizio fractional integral in Eqg. (11), we obtain.
S() = 5(0) = A(p Ky (6, S) + Alpy) f, K1 (v,S)dy,

E(t) — E(0) = A(py) Ky (¢, E) + Alpy) f K, (v, E)dy,

L(6) = 1,(0) = A(ps)Ks(t, 1) + Alps) [ Ks(v, 1)dy,

L(8) = 1,(0) = A(p)Ks(t, 1) + Alpy) [} Ka(v, 1)y,

T(t) = T(0) = Alps)Ks(t, T) + Alps) J, Ks (v, T)dy, (15)

arcnjournals@gmail.com Page | 94



International Journal of Pure and Applied Science Research

R(t) = R(0) = A(pe)Ks (6, R) + A(pe) [, Ko (v, R)dy
$,(t) = 5,(0) = Alp K, (t,S,) + Alpy) [ K, (v, S,)dy,

1:(8) = 1,(0) = Alpg)Ks(t, 1) + Alpg) [, Ke(y, 1, )dy,

Theorem1:If the following inequality holds 0 < M = max{R;, X,, N3, 8, Nz, ¢, X, Ng} <
1(16)

then the kernels Kj, K,, K3, K,, K5, K¢, K; and Kg  satisfy Lipschitz conditions and are
contraction mappings.

Proof. We consider the kernel K. Let S and S; be any two functions, then we have

1K1 (£, 8) — K1 (&, SPIl = I=2n(S () — S1(£)) — u(S (&) = SO (17)

Using the triangle inequality for norms on the right-hand side of Eq. (14), we obtain

IK1(t,S) — Ko (&6, SON < ||=An(S@®) = S O)|| + [|lw(S®) = ;)| £ An + wWIIS(E) —
S1OI < Ap +wIIS@) = S1 O = R 1IS@) = SOl (18)

Where X, is defined in Eq. (12). Similar results for the kernels K,, K3, K4, K5, K¢, K; and Kg can
be obtained using {E, El},{ll, 111}, {Iz, 121},{T, T, 1L{R, Rl},{Sr,Srl}and {Ir, Irl}, respectively,
as follows:

1K, (t, E) — Ko (8, EDIl < Rp |l 1) — L ()]

|K3(t, 1) — Ks(t, 1,)|| < Rs||L(®) — L, @)

|Ka(t, 1) = Ka(t, 12,) || < Ralll(0) = L)l

BIIKs(t,T) — Ks(t, Tl < Rs|IT(t) — Ty (|

1Ks(t, R) — Ke(t, Rl < Rg|[R() — Ry (D)l (19)
|k (8, S,) — K, (6,5)|| < ®7||S-(0) = S, (®)]]

|Ke (£, V) — Kg(t, L)) || < Rgl|S-(®) — S, |

where ¥, R,, X3, 84, X5, Ng, X, and g are defined in Eq. (12). Therefore, the Lipschitz
conditions are satisfied for K,, K3, K4, K5, Kg, K7 and Kg. In addition, since 0 <M =
max{®;, N,, N3, N, R, N, N, Ng} < 1, the kernels are contractions. From Eq. (15), the state
variables can be displayed in terms of the kernels as follows:

S(t) = S(0) + Alp)K1 (8, S) + Alpy) [ K1 (,S)dy,
E(®) = E(0) + A(po) Kz (t, E) + Alpy) f, Ko (v, E)dy,
1(6) = L,(0) + A(p3)Ks (¢, 1) + A(ps) f, Ks(v,1,)dy,
L(1) = L(0) + Alp)Ka(t, 1) + Alpy) [ Ko (v, 1,)dy,
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T(£) = T(0) + Alps)Ks(6, T) + Aps) [} Ks(v, T)dly, (20)
R(t) = R(0) + A(pe)Ks (6, R) + A(pe) [, Ko (v, R)dy
$,(1) = 5,(0) + Alp)K (£, 5,) + Apy) [, K7 (v, S,)dy,

1,() = 1,(0) + A(pa)Ks (¢, 1) + Aps) [, Ks (v, I,)dy,

Using Eqg. (20), we now introduce the following recursive formulas:

S2(6) = MKy (t, Sp1) + Apy) [ Ky (v, 1) dy,

En() = A(p2)Ky(t, En-1) + A(py) [ Ko (v, En-1)dy,

Lt (8) = Ap2)Ks (b n-1y1) + A(03) [} K3(¥, [in-11) Y,

Lz (8) = AP K4 (t In-132) + 8(a) fy Koy, Iin-1y2) Y, (21)
To(t) = Aps)Ks(t, Tues) + Aps) [} Ks (7, Tuo1)dly,

Ra(t) = A(pe)Ke(t, R-1) + A(pe) fy Ko, Ru1)dy

Sur(®) = AP K7 (t, Sneryr) + A7) [ Ko (¥, Stumnyr )4y,

Inr (t) = A(pB)KB(t: I(n—l)r) + A(Ps) fot Ks()" I(n—l)r)d}/;

The initial components of the above recursive formulas are determined by the given initial
conditions as follows:

So(t) = 5(0), Eo(¢) = E(0),I1,(t) = 1,(0),1,(t) = I,(0)
To(t) = T(0),Ro(t) = R(0), S, () = 5,(0), L, (6) = 1,-(0) (22)

The differences between the consecutive terms for the recursive formulas can be written as

Dy (t) = Sp(t) — Sp_q ()
= A(pl)(Kl(t! Sn—l) - Kl(t! Sn—Z))

+ A(Pl)f (Kl(y' Sn-1 — Kqi (¢, Sn—z))d}’:
0

Don(t) = En(t) - En—l(t)
= A(p2) (K3 (L, En_q1) — K3(t, En—2))

t
+A(py) fo Kz (9, Enes — Ko (6, En_))dy 23)

D3, () = 1,,(O) = 11,4

t
= A(p3) (K3(t, I1n_1) - K3(t, 11n_2)) + A(P3)f0 (K3 (y' I, ,— Ks(t, I1n_2)) dy,

D4, (1) = I, (t) — I3, (©)

t
= A(ps) (Ka(t, Izn_l) — Ky(t, Izn_z)) + A(ps) -fo (K4 ()" I — K (t, Izn_z)) dy,
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Dsy(t) = Tn(t) - Tn—l(t)
= A(ps) (Ks(t, Tr—1) — Ks(t, Tn—2))

¢
+805) [ sl Ty = K& Ta)d,
0
q)én(t) = R(t) - Rn—l(t)
= A(Pe)(Kts(t; Rn—1) — Ke(t, Rn—2))
+ A(Pﬁ)f (K6(y' Rn—1 — Ke(t, Rn—z))d}’,
0
@7, (0) = Srn(t) - Srn_l(t)
= A(P7)(K7(t» Srn_l) - K7(t: Srn_z))

t
+ A(p7) f (K7 (y' Srn_1 - K7(t’ STn—Z)) dy’
0

(I)Sn(t) = Irn(t) - Irn_l(t)

t
= Npg) (Ks(t, Ir,_,) — Ke(t. I, _,)) + Apg) jo (Ks (y, ——— ITn—Z)) dy,

For S, (t) = Xity P1i(0),En(t) = Xiog @2i(8), 14,,(8) = Xizg P3(8),12,(6) = Xing P4y(t)

rTn (t) = ln:l cDSni(t) ’ Rn (t) = ln:l c1)61' (t) , Srn (t) = ln:l cI)71' (t)rlrn(t) =
i=1 Pai(t) (24)

Now let generate the recursive inequalities for the differences
Dy, Doy, Pap, Py, P, P, Py, and g, as follows

| D1, O = [[Sn(®) = Sp1 (O
= ||A(p1)(1(1(t, Sn—1) — K1(t,S,-2))

t
+8) | (a5
0
- Ki(t, Sn—z))dJ’” (25)

Using t triangle inequality for norms to Eq. (25), we have

150 () = Sn-1 DIl = 1A(p1) I| K1 (€, Sp—1) — K1 (&, Sp-2) Il + A(p1) fot||K1(y, Sn-1) —
Ki(t,Sp-2)lldy
Then, since the kernel K; satisfies the Lipschitz condition with Lipschitz constant X;, we have

1S2(6) = Sn-1 (Ol < 1A R 1| Sp—q = Sn—2ll + Alp1)R; f0t||5n—1 — Sp—alldy
(26)

therefore, we have

|1, (O < A(Pl)N1||q)1(n—1)(t)” +
AR [ @1 a1y ||y (27)

Following the same procedures, we have
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192, (DNl < AR | @301y O] + AR, [} || @20-1) )| dy

|5, (B < A(P3)N3||q’3(n—1)(t)” + A(p3)R; fot”q)3(n—1)(Y)”dy
(28)

1D4n (Ol < AR Pagno1y O] + ARy f; [ Pagn-1, )| dy
D5, (Ol < As)Rs | P51y O] + A(o5)Rs ]| Psin-1y @]y
[P6n Ol < APe)Rs || Pon-1y O] + APRs [, |@6(n-1)07]|dy
17, (Ol < AR || @701y O] + AR, [[]| @701y @) dy

| P, (Ol < A(Ps)Nan’s(n—n(t)” + A(pg)Rg fot”q’s(n—n(Y)”dy

Theorem 5. If there exists a time t, > 0 such that the following inequalities hold:A(p,)®; +
A(py) Ritg > 1, fori=1.2,..8, (29)

then a system of solutions exists for the fractional Lassa fever model (3)- (4).

Proof. Since the functions S(t), E(t), I,(t), I,(t), T(t), R(t), S,-(t) and I.(t) are assumed
to be bounded and each of the kernels satisfies a Lipschitz condition, the following relations
can be obtained.

Using Eqgs. (27)- (28) recursively:

[P1, (O < ISCON[AP)R: + Alp)Rq]"

P2, (Ol < IEOI [A(p2)R2 + Alp2)R,]"

[Pz, (O < [ LO)I[Alp3)R3 + Alpz)R3]" (30)
[Pan (Ol < [ LO)I[A(P)Rs + A(pa)Rs]"

[Ps, (Ol < ITO)I[Alps)Rs + Alps)Rs]™

[Pen (Ol < [IRO)[I[ACPs)Rs + Alpe)N6]™

D7, < I S-(O)[AG7)R7 + Alp7)R7]"

|Pgn (O < I 1 (0)[I[ACpg)Rg + Alpg)Ng]™

Equation (30) shows the existence and smoothness of the functions defined in Eq. (25). To
complete the proof, we prove that the functions
Sn(t), En(t), I1,,(t), I, (t), T,,(t), R (t), S;(t) and I,.(t) converge to a system of solutions

of (3)-(4). We introduce B, (t), C,(t),E,(t), E,(t), G, (t),H(t), U,(t) and W, (t), as the
remainder terms after n iterations, i.e.,

S(6) = S(0) = Sp(t) — By (1),

E@) — E(0) = En(t) — G (2),
L(t) = ,(0) = I,,(t) — En (1),
L(t) = L(0) = L,,(t) — E,(¢),
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T(t) — T(0) = T (t) — Gu (D), €29)
R(t) — R(0) = R, (t) — Hy (1),

S;(t) = 5,(0) = Sy, (t) — Up(2),

L.(t) = I.(0) = L., (t) — Wy (D),

Then, using the triangle inequality and the Lipschitz condition for K;, we have

1B @I = [|ACo0) (K1 (6,8) = K1 (£:50-1))) + A1) [y (Ka (37, S) = Ka (0, Sn-1))ly || <

AP (£, 5) = Ky (&, S| + Ao [NIK, (3,5) = Ky, Sas)lldy < AP, IS —
Sn—1ll + ACp)R B, (D) [IS — Sp_1llt.

Repeating same process, we have;
1B, (Ol < [(Alpy) + Alp) )R]0, (32)
At ty we have ||B, (D)l < [(A(p1) + Alpto)R;]" 16, (33)

Taking the limit on Eq. (33) as n — o and then using condition (29), we obtain||B,,(t)|| - 0.
Using the same process as described above, we have the following relations:

1C. O < [(Alp2) + Alp2)tg)R2]" 16, (34)
IEx(OIl < [(Ap3) + Ap3)to)R3]"* 165 (35)
IE. O < [(Alpa) + Alpa)to)Ra]™ 10, (36)
1G. (Il < [(Aps) + Alps)to)Rs]™ 165 (37)
I1H, (@O < [(Alpe) + Alpe)to)Re]™ 66 (38)
U < [(Alp7) + Alp)to)R7]" 16, (39)
WO < [(Alps) + Alps)to)Rs]™* 05 (40)
Similarly, taking the limit on Egs. (34) — (40) as n — oo and then using condition (29), we
have IOl = 0, |ER (Ol = 0, [|E, (Ol = 0, |G (DIl = 0, IH (Dl = 0, 1 U (D] -

0 and ||W,,(t)|| — 0. Therefore, the existence of the system of solutions of system (3)- (4) is
proved.

We now give conditions for the system of solutions to be unique.

Theorem 6. System (3) along with the initial conditions (4) has a unique system of solutions
if the following conditions hold: 1 — A(p))R; + A(p))N;t >0, fori=12,..8, ).
(41)

Proof. Assume that{{S(t),E(t), I;(t), I,(t),T(t),R(t), Sy-(t), L.(t) }is another set of

solutions of model 3)- 4 in addition to the solution set
{§S(t),E(t), I;(t), I,(t), T(t),R(t), Sy(t), I.(t) } proved to exist in Theorems 4 and 5 then
S(t) = 51(6) = Alp) (K1 (£, S) — K1 (8, S1) + Alpy) fOt(Kl(y. S) — K1 (v, S1))dy, (42)

Taking the norm and triangle inequality on both sides of Eq. (38), we have
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IS(®) — S1 DI < Alp)IIKL (6, S) — K1 (8, SN + Alpa) fot”(Kl(Y: S) — K. (v, SO
(43)

Using the Lipschitz condition for the kernel K, we find

1S(®) — S1 (Ol < AlpD)R IS — S1 (DI + Alp)R1tlIS@) — Sy (D (44)
If Eq. (40) rearranging we obtain
IS@) — S1(OI11 = Alp)R; + Alp)R;t < 0 (45)

Finally, applying condition (41) fori = 1 to Eq. (45), we obtain
IS(®) —S: (@I =0 (46)
Hence S(t) = S,(t).
Applying a similar procedure to each of the following pairs

(E@), E1(8)), (11 (6), 11, (8)) , (12 (), I, (D), (T (), T1 () (R(2), Ry (D)), (S (£), Sy, ()
and (1,(t), I, ()
with inequality (41) for i = 1,2, ...,8, respectively, we have

E@®) = E;(©),1(t) = 1,(®) , [,(¢) = L, (©), T(®) = T1(8), R(t) = Ry (D),

S:@) = S, (©) and 1.() = I, (O). (47)
Thus, the uniqueness of the system of solutions of the fractional order system is proved.
5 Data fitting and sensitivity analysis and parameter estimation

To estimate the remaining parameter values of our Lassa fever model (1), we applied the
model to the cumulative number of reported cases from 2019 to 2021, provided by the Nigeria
Centre for Disease Control. We developed a MATLAB program using ODE45 solvers and
employed model data fitting techniques through conventional nonlinear least squares
methods, as shown in Table 3. Figure 2 provides a pictorial representation of the data fitting
for the model using the cumulative confirmed cases.

Using the parameter values obtained from data fitting, we conducted sensitivity analyses to
assess the impact of different parameters on Lassa fever dynamics within the population. This
approach enabled us to simulate various scenarios, providing insights into the potential
outcomes and effectiveness of different intervention strategies.
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Figure 2. Data fitting of the Lassa fever model (1) using cumulative confirmed cases in
Parameter Descriptions Value Source
I1 Rate of recruitment of susceptible human 68088 [37]
A Rate of recruitment of susceptible mastomys rat’s 557 [37]
u Natural death rate of human 0.000053 | [37]
U] Natural death rate of mastomyns rat, 0.003 [36]
[0) Rate at which immunity wanes after recovery 0.7246 fitted
Y1 Recovery rate of infected human population 0.7194 fitted
Y2 Recovery rate of infected treated human population | 0.7285 fitted
Y3 Recovery rate of infectious deceased human 1.5472 fitted
population
a, Disease induced death rates of individuals in I, (t) 0.484 [36]
a, Disease induced death rates of individuals in I, (t) 0.484 [36]
6 Disease induced death rate of infected individuals in | 0.8 [36]
T(t) compartment
c Rates at which infected deceased move to 0.4325 fitted
treatment class,
] Rates at which infected humans move to treatment | 0.7774 fitted
class
'3 Proportion of new exposed individual that become | 0.4182 fitted
symptomatically infected
9 Rate at which an exposed individual becomes 1.7169 fitted
infectious
17 Transmission rates due to contact with infected 0.4955 fitted
deceased
By Rate of human-to-human contact 0.1682 fitted
B, Rate of Mastomys rat-to-human contact 0.0071 fitted
B Rate of Mastomys rat-to-mastomys rat contact 0.0209 fitted

Table 3. Parameter values for the Lassa fever model (1)
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6 Sensitivity analysis

Mathematical modeling of infectious diseases aims to understand how diseases spread in a
population (Panovska-Griffiths, 2020). Sensitivity analysis is a key technique used to gain
insights into disease dynamics by evaluating the impact of different parameters on the model.
In this study, we used Partial Rank Correlation Coefficients (PRCC) within MATLAB R2022b to
identify the most sensitive epidemiological parameters for controlling the Lassa fever (LF)
outbreak (Musa et al., 2020).

Our analysis focused on how variations in each parameter affect the reproduction number,
which helps in developing intervention strategies to control the spread of the disease. The
sensitivity indices and parameter values are illustrated in Figure 3. The analysis revealed that
positive values for parameters ¢ ,9,¢, 51, B3 and A were associated with an increased
spread of Lassa fever. Conversely, a decrease in the negative values of parameters I1, ¥4, Y1, V1,
¢ and ¢ was linked to a rise in transmission rates. The sensitivity indices showed that the
natural mortality rate of rats yr and the rodent-to-rodent transmission rate 55 had the most
significant effects. An increase in f3results in a higher reproduction number, while an increase
in P leads to a reduction in the rat population.

<
\varphi -
e

Warrho [~

Parameters
T

Sensitivity indices

Figure 3. Sensitivity indices of the Lassa fever reproduction number using partial rank correlation coefficient (PRCC)

In conclusion, effective control measures should focus on reducing transmission likelihood and
the rate of rat population recruitment. Strategies to achieve this include avoiding contact with
infected corpses (through safe burial practices), promoting good hygiene, conducting
educational campaigns, and using rodent traps or pesticides. These measures can significantly
reduce the spread of Lassa fever among people.

7 Numerical computation

We now present the numerical results and simulations of the extended fractional order
mathematical model in Caputo sense with the help of the derived algorithm and numerical
coded written in MATLAB environment using the model equations and the values of the
parameters in table 3.
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8 Result and discussion

In this paper, the dynamics of Lassa fever virus model are examined via Caputo—Fabrizio
fractional order differential equation model approaches: Varying the values of fractional-order
a for the FODE, Due to the lack of any disease control measures, the number of susceptible
and infected population dramatically increases (see Figure 1), since both the susceptible and
infected population live together in the environment that serves as a breeding ground for the
bacteria and actively interact among themselves, Moreover, we can easily observe from
Figure 6 and 7 that when a = 1 the Caputo—Fabrizio non-integer order derivative reveals more
absorbing characteristics. Consequently, this causes the Lassa fever virus dynamic to stay at
almost a constant rate for a long period of time (see Figures 2 and 4). However, the effect of
increasing or decreasing infectious contact with environment in model (1) at different values
of alpha in figure 3 indicate the vulnerability of all state variables.

9 Conclusion

In this paper, we examined the interaction between human and rodent hosts by formulating
a non-linear deterministic mathematical model to describe the transmission dynamics of
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Lassa fever, using demographic data from Nigeria. This model was extended to an integer type
using the Caputo—Fabrizio fractional differential equation and analyzed using fixed point
theory and an iterative method. The fractional model employs non-singular, exponentially
decreasing kernels from the Caputo—Fabrizio fractional derivative, and we established the
existence and uniqueness of solutions for the system. We identified the equilibrium points of
the model and determined the conditions for local asymptotic stability of the disease-free
equilibrium point. Numerical solutions of the fractional system were obtained and compared
for different values of the fractional order, exploring the use of the Caputo—Fabrizio fractional
derivative in modeling real-life problems involving memory effects.

The model was parameterized using cumulative confirmed cases of Lassa fever in Nigeria from
January 2019 to December 2021, obtained from the Nigeria Centre for Disease Control
database. Sensitivity analysis was conducted to evaluate the significance of each parameter
on the transmission dynamics of Lassa fever in Nigeria. The analysis identified the transmission
coefficients A, 0, ¢, @ B4, B, and B3 as critical control parameters influencing the transmission
of Lassa fever. The basic reproduction number, R,, was found to be greater than one ( Ry, >
1), suggesting that Lassa fever is likely to remain endemic in Nigeria unless effective control
methods are implemented to reduce R, below unity.

Our study explored the impact of controlled parameters on the total infected human and
deceased populations. The results indicate that combining all possible transmission control
measures significantly reduces the burden of Lassa fever more quickly in the population. Early
treatment of infected individuals, personal hygiene, precautions by health workers, proper
burial practices, educational campaigns, and the use of pesticides and rodent traps are
essential strategies for reducing the number of infected individuals and containing the spread
of Lassa fever in Nigeria.
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