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Abstract: in this paper we extended mathemaƟcal models that were based on integer order derivaƟves to 
fracƟonal order derivaƟves, we formulate and analyzed fracƟonal mathemaƟcal modelling of dynamics of Lassa 
fever epidemic which includes both infected deceased and treatment compartments via Caputo sense. We proved 
that the propose mathemaƟcal model is biological and meaningfully well-posed. We also compute the basic 
reproducƟon number via next generaƟon method. The Lassa fever-free equilibrium 𝜀଴  is the only local asymptoƟc 
stable equilibrium if  ℛ଴௛ <  1 and it is not stable when  ℛ଴௛ >  1. SensiƟvity analysis of the model parameters 
indicates that  𝜓 and  𝛽ଷ are the basic control parameters associated with persistence or eradicaƟon of Lassa 
fever virus. More precisely, there is an inverse relaƟonship between ℛ଴  and 𝜓. In a similar note, increasing 
(decreasing) the value of  𝛽ଷ keeping all other parameters fixed increases (decreases) the value of ℛ଴. We can 
infer from this result that good environmental sanitaƟon and fumigaƟon would reduce rodents’ populaƟon 
thereby reducing the value of  𝛽ଷ which leads to the decrease of ℛ଴. The existence and uniqueness of the soluƟon 
of proposed FODE are established through the fixed-point theory. The numerical results and simulaƟons of the 
extended fracƟonal order mathemaƟcal model were explored in Caputo sense.  

Keywords: Lassa fever virus; threshold parameters; model fiƫng; SensiƟvity analysis; Control Parameters; Caputo 
fracƟonal order derivaƟve and fixed-point theory. 

 
 

 

1 Introduction 

Lassa fever is also called Lassa hemorrhagic fever, is an infecƟous disease and a zoonoƟc viral 
illness insƟgated by the Lassa virus, a single-stranded RNA virus from the Arenaviridae family 
[1, 2]. The mastomys natalensis which known as a mulƟmammate rat is the main host of this 
virus that is dominant in Sub-Saharan African as one of the most common rodent species [3–
5]. the viral parƟcle responsible for cause of Lassa fever was first idenƟfied in 1969 at Borno 
state northern region of Nigeria. However, the yearly esƟmated incidence in eastern and 
western regions of West Africa ranges from a hundred to three hundred thousand cases with 
nearly five thousand deaths [6–8] this momentum necessitated the Centers for Disease 
Control and PrevenƟon (CDC) and World Health OrganizaƟon (WHO) to declared Lassa fever 
as endemic and a health challenge in Western African Accordingly. The countries at the high-
risk for Lassa fever (belt) include Liberia, Guinea, Sierra Leone, and Nigeria [6, 9–11]. the 
largest epidemic was reported to be in Nigeria, with report of many outbreaks from the 
aforemenƟoned countries over the years. The largest outbreak of Lassa fever that swept 
through eighteen out of the thirty-six states of the country is reported to be in Nigeria, with 
over 400 confirmed cases were reported [12].  
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Although, the yearly increase of cases of Lassa virus has to do with various factor such as 
insufficient health faciliƟes, polluted environment, and poor personal hygiene, to gather with 
the ecological climate factor rainfall and movement of harvested food into our communiƟes. 
These acƟviƟes are associated with an improve or increase in the host reservoir (mastomys 
rodents) to migrate from their natural habitaƟon to the human environment, a reduce or 
diminished in the prevalence of Lassa fever is rely upon on human efforts in reducing the 
transmission proporƟon of this disease [3, 14].  

Lassa fever has an incubaƟon period between 6 and 21 days, hence, following this exposure 
period, infected humans are expected to start showing symptoms of the disease. Although 
about eighty percent of infected humans have only slight symptoms such as headaches, 
cough, muscle pain, sore throat, weakness, and fever. However, in severe cases, an infected 
human can develop more complicaƟons such as facial swelling, bleeding from the nose, 
respiratory distress, and low blood pressure [2, 11]. In a more criƟcal situaƟon, this disease 
can lead to death within fourteen days aŌer the first appearance of the symptoms, due to 
neurological problems [2]. The Lassa virus is primarily spread to humans through human 
contact with food or substances that are contaminated by the urine or feces of an infected 
rodent [9], while secondary infecƟon from human-to-human and laboratory transmissions are 
likewise possible [10].  Due to the absence of a vaccine against Lassa fever, prevenƟon against 
infecƟon has an important role in controlling the transmission of this disease in the 
populaƟon. Currently, since the eradicaƟon of mastomys rodent populaƟon is unrealisƟc, the 
present ways of avoiding the spread of this infecƟon include the facilitaƟon of good personal 
hygiene to avoid contact with infected rodents’ secreƟons or excreƟons, and implementaƟon 
of standard health faciliƟes for effecƟve tesƟng, diagnosing and treatment of paƟents [10]. 

Literature revel that there is no confirmed cure or vaccine exists for Lassa fever yet, however, 
ribavirin is an anƟviral drug that has been declared as an effecƟve treatment for Lassa fever 
paƟents, if administered at the premature period of the infecƟon [7, 9]. Consequently, the 
transmission dynamics of the virus is sƟll not yet fully comprehended limited and far from 
being complete. Therefore, it is then important to urgently conduct various researches and 
explore new methods and techniques, which can help to beƩer understanding of the outbreak 
process and controlling the spread of the virus. 

Over the decade, mathemaƟcal models have become vital tools in studying the dynamics of 
diseases in a given populaƟon. The recent development of the use of mathemaƟcal models 
such as [2], has been developed for numerous diseases, to answer specific quesƟons in an 
aƩempt to contribute to the understanding of the epidemiology of such disease under study. 
More specifically, studies have been carried out to further provide informaƟon on the 
transmission dynamics of Lassa fever (see [3, 7–9, 14]).  

MathemaƟcal model and simulaƟon are a pracƟcal essenƟal tool that helps us to improve our 
understanding of the real world [16]. It can help to determine the characterisƟcs and 
magnitude of epidemic disease transmission, to predict its outbreak and to see which 
parameters are more influenƟal in the dynamics of the disease 

In recent decades, many physical problems have been modeled using the fracƟonal calculus. 
The main reasons given for using fracƟonal derivaƟve models are that many systems show 
memory, history, or nonlocal effects, which can be difficult to model using integer order 
derivaƟves. The main reasons given for using fracƟonal derivaƟve models are that many 
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systems show memory, history, or nonlocal effects, which can be difficult to model using 
integer order derivaƟves. The basic theory and applicaƟons of fracƟonal calculus and 
fracƟonal differenƟal equaƟons can now be found in many studies (see, e.g., [15–19]). 
Although most of the early studies were based on the use of the Riemann–Liouville fracƟonal 
order derivaƟve or the Caputo fracƟonal order derivaƟve, it has been pointed out recently 
that these derivaƟves have the problem that their kernels have a singularity that occurs at the 
end point of an interval of definiƟon. As a result, many new definiƟons of fracƟonal derivaƟves 
have now been proposed in the literature (see, e.g., [20–28]). The fundamental differences 
among the fracƟonal derivaƟves are their different kernels which can be selected to meet the 
requirements of different applicaƟons. For example, the main differences between the Caputo 
fracƟonal derivaƟve [16], the Caputo–Fabrizio derivaƟve [22], and the Atangana– Baleanu 
fracƟonal derivaƟve [30] are that the Caputo derivaƟve is defined using a power law, the 
Caputo–Fabrizio derivaƟve is defined using an exponenƟal decay law, and the Atangana–
Baleanu derivaƟve is defined using a MiƩag–Leffler law. Examples of the applicaƟons of the 
new fracƟonal operators to real world problems have been given in a number of recent 
papers. For example, Tateishi et al. [24] have compared the classical and new fracƟonal Ɵme-
derivaƟves in a study of anomalous diffusion. Also, Atangana have compared the Caputo–
Fabrizio fracƟonal derivaƟve and the Atangana–Baleanu fracƟonal derivaƟve in modeling 
fracƟonal delay differenƟal equaƟons [29] and in modeling chaoƟc systems [29]. They found 
that the power law derivaƟve of the Riemann–Liouville fracƟonal derivaƟve or the Caputo–
Fabrizio fracƟonal derivaƟve provides noisy informaƟon due to its specific memory properƟes. 
However, the Caputo–Fabrizio fracƟonal derivaƟve gives less noise than the power law one 
while the Atangana–Baleanu fracƟonal derivaƟve provides an excellent descripƟon.  

Therefore, the novel feature of this research is to broaden exisƟng knowledge by  develop and 
formulates ordinary differenƟal equaƟons (integer-order derivaƟves) and extend it to the 
fracƟonal differenƟal equaƟons (non integer-order derivaƟves) for the mathemaƟcal model 
of the dynamic of Lassa fever by incorporaƟng treatment, environment contaminaƟon and 
infecƟous deceased populaƟon compartments,  that will percipience the disease spread or 
control strategy, using SensiƟvity analysis and numerical simulaƟon of the model parameter 
values base on demographic data of Nigeria. 

2 The MathemaƟcal model descripƟon, formulaƟon and analysis 

2.1 model descripƟon 

A mathemaƟcal model of Lassa fever virus by in cooperaƟng infecƟous deceased 
compartment with treatment is introduced. The total human populaƟon 𝑁௛(𝑡) is divided into 
six compartments, namely, 𝑆(𝑡) represents the number of suscepƟble individuals, 𝐸(𝑡) 
represents the number of exposed individuals in the stage of Lassa fever virus infecƟon,  𝐼ଵ(𝑡) 
represents the number of infected populaƟon, 𝐼ଶ(𝑡) represents the number of Infected 
deceased populaƟon (Individuals that contracted the disease through corpse or death 
infecƟous human), 𝑇(𝑡) represents the number of individuals being treated; 𝑅(𝑡) represents 
the number of individuals who have recovered and 𝑁௥(𝑡) is divided into two compartments, 
namely,  𝑆௥(𝑡) represents the number of SuscepƟble mastomys rats, 𝐼ଵ(𝑡) represents the 
number of Infected mastomys rats. 

This study, engross on the effects of mulƟple transmission pathways of Lassa Fever concerning 
the progression of the infecƟon in the human and rodent populaƟon. The use of mulƟple 
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transmission routes may give us a beƩer understanding of the epidemiological structure of 
Lassa fever. Thus, the proposed model is formulated based on the following assumpƟon. 

(a) There is homogeneous mixing of members of the population under consideration. 
(b) The dynamics outbreaks of Lassa fever in Africa (Nigeria) on yearly bases for relatively 

long period of time, allow a demographic process to take place as result of new 
additional inflow of new births and migration as well as deaths (natural or due to 
disease). 

(c) Deceased individuals can still transmit the infection to susceptible populations before 
and during burial/funerals arrangement or ceremonies.  

(d) Mostly poor resource countries are vulnerable to environmental transmission of the 
Lassa fever virus, due to the fact that environmental contribution is one of the 
essential factors enhancing the transmission process.  

(e) Environmental contamination occurs when Mastomys rats shed the virus through 
urine or faeces. Consequently, direct contact with virus infested materials, through 
touching of soiled household objects, eating contaminated food, or exposure to open 
wounds or sores, can lead to infection, similarly infection may occur during rodents 
capture and grooming as Mastomys rats are sometimes consumed as a source of 
food. 

Hence, the total human populaƟon and rodent’s populaƟon are 𝑁௛(𝑡) = 𝑆(𝑡) +
𝐸(𝑡)+𝐼ଵ(𝑡)+𝐼ଶ(𝑡) + 𝑇(𝑡) + 𝑅(𝑡), and 𝑁௥(𝑡) = 𝑆௥(𝑡)+𝐼௥(𝑡) respecƟvely. Therefore, the 
pictorial diagrammaƟcal representaƟon of the model is shown in Fig. 1. According to Fig. 1, 
we have following model equaƟons: 
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DescripƟon of the state variables and the parameters of the flow chart model  

Symbol of the Variable Description 
𝑆(𝑡) Susceptible human individuals  
𝐸(𝑡) Exposed human individuals 
𝐼ଵ(𝑡) Infected human individuals 
𝐼ଶ(𝑡) Infected deceased individuals n  
𝑅(𝑡) Recovery human individuals 
𝑇(𝑡) Treatment human individuals 
𝑆௥(𝑡) Susceptible mastomys rats  
𝐼௥(𝑡) Infected mastomys rats 

 

Table 1.  The state variables of the flow chart model system 

Symbol of the 
Parameters 

Descriptions 

Π  Rate of recruitment of susceptible human population 
Λ 

 
Rate of recruitment of susceptible mastomys rat’s population 

𝜇 , ψ Natural death rate of human and mastomyns rat, respectively 
𝜙 Rate at which immunity wanes after recovery 

𝛾ଵ, 𝛾ଶ 𝑎𝑛𝑑𝛾ଷ Recovery rate of infected, treated and infectious deceased human, respectively 
        𝛼ଵ and 𝛼ଶ Disease induced death rates of individuals in 𝐼ଵ(𝑡) and 𝐼ଶ(𝑡), respectively 

𝛿 Disease induced death rate of infected individuals in 𝑇(𝑡) compartment 
𝜚, 𝜍, Rates at which infected humans & infected deceased move to treatment class, 

respectively 
𝜉𝜖(0,1) Proportion of new exposed individual that become symptomatically infected 

𝜗 Rate at which an exposed individual becomes infectious 
𝜑 Transmission rates due to contact with infected deceased population (𝐼ଶ) relative to 

the transmission rate due to infectious human corpse yet to be buried 
𝛽ଵ  The human-to-human contact rate  
𝛽ଶ Mastomys rat-to-human contact rate 
𝛽ଷ Mastomys rat-to-mastomys rat contact rate 

Table 2. The parameters of the flow chart model system 

 

2.2 Model FormulaƟon  

From the flow chart in figure 1. and the model assumpƟons, the following system of integer 
order Ordinary differenƟal equaƟon (ODEs) is the required model. 

𝑑𝑆

𝑑𝑡
= Π + ϕ𝑅 − (𝜆௛ + 𝜇)𝑆 

𝑑𝐸

𝑑𝑡
= 𝜆௛𝑆 − (𝜗 + 𝜇)𝐸 

𝑑𝐼ଵ

𝑑𝑡
= 𝜗𝜉𝐸 − (𝛾ଵ + 𝜚 + 𝜇 + 𝛼ଵ)𝐼ଵ 

𝑑𝐼ଶ

𝑑𝑡
= 𝜗(1 − 𝜉)𝐸 − (𝛾ଶ + 𝜍 + 𝜇

+ 𝛼ଶ)𝐼ଶ                                                                                                (1) 
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𝑑𝑇

𝑑𝑡
= 𝜚𝐼ଵ + 𝜍𝐼ଶ − (𝛾ଷ + 𝜇 + 𝛿)𝑇 

𝑑𝑅

𝑑𝑡
= 𝛾ଵ𝐼ଵ + 𝛾ଶ𝐼ଶ + 𝛾ଷ𝑇 − (ϕ + 𝜇)𝑅 

𝑑𝑆௥

𝑑𝑡
= Λ − (𝜆௥ + ψ)𝑆௥ 

𝑑𝐼௥

𝑑𝑡
= 𝜆௥𝑆௥ − ψ𝐼௥ 

With  

𝜆௛ =
𝛽ଵ(𝐼ଵ + 𝜑𝐼ଶ) + 𝛽ଶ𝐼௥

𝑁௛
   𝑎𝑛𝑑    𝜆௥ =

𝛽ଷ𝐼௥

𝑁௥
                                                                                (2) 

where 𝛽ଵ is the effecƟve contact rate for human-to-human transmission. 𝛽ଶ is a mastomys rat-
to-human effecƟve contact rate, and 𝛽ଷ as mastomys rat-to-mastomys rat contact rate. 
Consequently, the parameters 𝜑 is a modificaƟon parameter which measures transmissibility 
reducƟon of infected deceased populaƟon (𝐼ଶ).  

2.3 Caputo–Fabrizio fracƟonal model for transmission dynamics of Lassa fever 

Many new definiƟons of fracƟonal order derivaƟves have been proposed and used to develop 
and analyze mathemaƟcal models for a wide variety of real-life problems, and the advantages 
of memory, history, or nonlocal effects of fracƟonal order derivaƟves moƟvated this research 
work. Consequently, Caputo and Fabrizio [22] recently developed a new fracƟonal order 
derivaƟve without any singularity in its kernel which accurately describe the memory effect in 
a real-life problem. The kernel of the new fracƟonal derivaƟve has the form of an exponenƟal 
funcƟon. More recently, Losada and Nieto [23] derived the fracƟonal integral associated with 
the new fracƟonal Caputo–Fabrizio fracƟonal derivaƟve. 

Now replacing the first-order Ɵme derivaƟves of the leŌ-hand side of (1) by the fracƟonal 
Caputo–Fabrizio derivaƟve we obtain our new fracƟonal derivaƟve model (Caputo–Fabrizio 
fracƟonal model for dynamics of Lassa fever epidemic mode) as follows: 

 𝐶𝐹஽௧
ఘ

𝑆 = Π + ϕ𝑅 − (𝜆ℎ + 𝜇)𝑆 

 𝐶𝐹஽௧
ఘ

𝐸 = 𝜆ℎ𝑆 − (𝜗 + 𝜇)𝐸 

 𝐶𝐹஽௧
ఘ

𝐼1 = 𝜗𝜉𝐸 − (𝛾
1

+ 𝜚 + 𝜇 + 𝛼1)𝐼1 

 𝐶𝐹஽௧
ఘ

𝐼2 = 𝜗(1 − 𝜉)𝐸 − (𝛾
2

+ 𝜍 + 𝜇 + 𝛼2)𝐼2 

  𝐶𝐹஽௧
ఘ

𝑇 = 𝜚𝐼ଵ + 𝜍𝐼ଶ − (𝛾ଷ + 𝜇 + 𝛿)𝑇                                                                                        (3) 

𝐶𝐹஽௧
ఘ

𝑅 =  𝛾
1
𝐼1 + 𝛾

2
𝐼2 + 𝛾

3
𝑇 − (ϕ + 𝜇)𝑅         

 𝐶𝐹஽௧
ఘ

𝑆𝑟 =  Λ − (𝜆௥ + ψ)𝑆௥ 

𝐶𝐹஽௧
ఘ

𝐼𝑟 =  𝜆𝑟𝑆𝑟 − ψ𝐼𝑟 
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where 𝐶𝐹஽௧
ఘrepresents the Caputo-Fabrizio fracƟonal derivaƟve of order 0 < 𝜌𝑖 ≤ 1, with the 

non-negaƟve iniƟal condiƟons 

𝑆(0) = 𝑆଴, 𝐸(0) = 𝐸଴, 𝐼ଵ(0) = 𝐼ଵ଴, 𝐼ଶ(0) = 𝐼ଶ଴, 𝑇(0) = 𝑇଴, 𝑅(0) = 𝑅଴ , 𝑇(0) = 𝑆௥଴, 𝐼௥(0) =

𝐼௥଴
                                                                                                                                                                           (4) 

We assume that the fracƟonal orders (0 <  𝜌𝑖 <  1, 𝑖 =  1, 2, . . . , 8) for each of the eight 
populaƟons can be different. 

3 PosiƟvity and Boundedness  

To retain the biological validity of model 1, we must prove that the soluƟons of the 
fracƟonal-order system (3) with the force of infecƟon are posiƟve and bounded for 𝑡 > 0. 
Since the system monitors humans' and rodents' populaƟons, all associated parameters are 
nonnegaƟve. We will now prove the posiƟvity and boundedness of the soluƟons to ensure 
the system is mathemaƟcally well-posed and biologically meaningful. 

Theorem1. 𝐿𝑒𝑡 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑆(0) > 0, 𝐸(0) > 0, 𝐼ଵ(0) > 0, 𝐼ଶ(0) > 0, 𝑇(0) > 0, 

𝑅(0) > 0, 𝑆௥(0) > 0, 𝑎𝑛𝑑 𝐼௥(0) > 0, 𝑡ℎ𝑒𝑛 𝑆(𝑡), 𝐸(𝑡),  𝐼ଵ(𝑡),  𝐼ଶ(𝑡), 𝑇(𝑡), 𝑅(𝑡), 𝑆௥(𝑡) 𝑎𝑛𝑑         
 𝐼௥(𝑡) 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 (1) 𝑎𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0. 

Proof. Suppose 𝑆(𝑡) is not posiƟve, then there exists a first Ɵme, say 𝑡∗ > 0, such that 𝑆(𝑡) >
0   for all 𝑡 ∈ [0, 𝑡∗) and 𝑆(𝑡∗) = 0. By inspecƟon of the equaƟon of 𝐸(𝑡), we have that  

𝐶𝐹஽௧
ఘ

𝐸 ≥ −(𝜗 + 𝜇) 𝐸(𝑡), 𝑓𝑜𝑟  𝑡 ∈ [0, 𝑡∗),  

Hence, it follows that, 

                                           𝐸 > 0 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡∗). 

Thus, it is clear from the first equaƟon of model 1 that  

          𝐶𝐹஽௧
ఘ

𝑆 ≥ −(𝜆
ℎ

+ 𝜇)𝑆(𝑡), 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑡∗). 

It follows that 𝑆(𝑡∗) > 0 which contradicts 𝑆(𝑡∗) = 0. therefore, 𝑆(𝑡) is posiƟve. Using similar 
approach as that for 𝑆(𝑡), it is easy to show that 𝐸(𝑡) > 0,  𝐼ଵ(𝑡) > 0,  𝐼ଶ(𝑡) > 0, 𝑇(𝑡) > 0,
𝑅(𝑡) > 0, 𝑆௥(𝑡) > 0 𝑎𝑛𝑑  𝐼௥(𝑡) > 0. Hence the proof. 

3.1 Invariant Region 

In order to retain the biological feasible region of fracƟonal-order system (3) we will be 
analysed in a biologically feasible region as follows. Consider the biologically feasible region 
consisƟng of   

Ω = Ω௛ × Ω௥ ∈ ℝା
଺ × ℝା

ଶ  with  

Ω௛ = {𝑆, 𝐸,  𝐼ଵ,  𝐼ଶ, 𝑇, 𝑅 ∈ ℝା
଺  : 𝑁௛ ≤

ஈ

ఓ
   } 

and 

Ω௥ = { 𝑆௥,  𝐼௥, ∈ ℝା
ଶ  : 𝑁௥ ≤

ஃ

ట
 } 
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It can be shown that the set Ω  is a posiƟvely invariant set and global aƩractor of this system. 
This implies that any phase trajectory iniƟated anywhere in the nonnegaƟve region ℝା

଼  enters 
the feasible region  Ω and remains in  thereaŌer. 

Lemma 1. The biological feasible region  Ω = Ω௛ ∪ Ω௥ ⊂ ℝା
଺ × ℝା

ଶ  of the Lassa fever model 
(1) is posiƟvely invariant with nonnegaƟve iniƟal condiƟons in ℝା

଼ . 

Proof The following steps are followed to establish the posiƟve invariance of Ω  (i.e., soluƟons 
in Ω  remain in Ω  for all 𝑡 > 0). The rate of change of the total human and rodent populaƟons 
𝑁௛and 𝑁௥  respecƟvely, are obtained by adding the respecƟve components of fracƟonal-order 
system (3) which result to  

𝐶𝐹஽௧
ఘ

𝑁ℎ(𝑡) = Π − 𝜇𝑁ℎ(𝑡) − {(𝛼1)𝐼1(𝑡) + (𝛼2)𝐼2(𝑡) + (𝛿)𝑇(𝑡)} 𝑎𝑛𝑑 

𝐶𝐹஽௧
ఘ

𝑁𝑟(𝑡) = Λ − 𝜓𝑁𝑟(𝑡) 

so that,  

𝐶𝐹஽௧
ఘ

𝑁ℎ(𝑡) ≤ Π − 𝜇𝑁ℎ(𝑡) 𝑎𝑛𝑑 𝐶𝐹஽௧
ఘ

𝑁𝑟(𝑡)

≤ Λ − 𝜓𝑁𝑟(𝑡)                                                          (5) 

Hence, 𝑁௛(𝑡) ≤ 𝜇𝑁௛(0)𝑒ఓ௧  +
ஈ

ఓ
(1 − 𝑒ିఓ௧) 𝑎𝑛𝑑 𝑁௥(𝑡) ≤ 𝜓𝑁௥(0)𝑒ట௧  +

ஃ

ట
൫1 − 𝑒ିట௧൯.   

In parƟcular, 𝑁௛(𝑡) ≤
ஈ

ఓ
 𝑎𝑛𝑑 𝑁௥(𝑡) ≤  +

ஃ

ట
 if the total human and rodent populaƟon at the 

iniƟal instant of Ɵme, 𝑁௛(0) ≤
ஈ

ఓ
 𝑎𝑛𝑑 𝑁௥(0) ≤  +

ஃ

ట
, respecƟvely. So, the region Ω  is 

posiƟvely invariant. Thus, it is consequently adequate to consider the dynamics of Lassa fever 
governed by fracƟonal-order system (3) in the biological feasible region Ω , where the model 
is considered to be epidemiologically and mathemaƟcally well posed. 

3.2 Existence and Stability of Lassa fever free equilibrium   

The Lassa fever-free equilibrium of the fracƟonal-order system (3) is obtained by finding the 
steady-state soluƟon in the absence of Lassa fever infecƟon. This involves seƫng the right-
hand side of equaƟon (3) to zero and solving the resulƟng algebraic equaƟons simultaneously. 
We have 

 𝐶𝐹஽௧
ఘ

𝑆 = Π − 𝜇𝑆 

𝐶𝐹஽௧
ఘ

𝑆𝑟 = Λ − 𝜓𝑆𝑟 

And the the disease-free equilibrium state denoted by ℇ଴ is 

 ℇ଴ = (𝑆∗, 𝐸∗, 𝐼ଵ
∗, 𝐼ଶ

∗, 𝑇∗, 𝑅∗, 𝑆௥
∗, 𝐼௥

∗) =

ቀ
ஈ

ఓ
, 0,0,0,0,0,

ஃ

ట
, 0ቁ                                                                 (6) 

3.3 Basic reproducƟon number 

The next-generaƟon matrix method is used on system (3) for determining the reproducƟon 
number ℛ଴. The epidemiological quanƟty ℛ଴, called the reproducƟon number, measures the 
typical number of Lassa fever cases that a Lassa fever-infected individual can generate in a 
human populaƟon that is completely suscepƟble.  
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Using the notaƟon in [35], the matrices 𝐹 and 𝑉 for the new infecƟon teams and the remaining 
transfer or transiƟon teams are as follows 

Gain ⇒  𝐹 =  ൮

0
0
0
0

𝛽ଵ

0
0
0

𝛽ଵ𝜑
0
0
0

𝛽ଶ

0
0
𝛽ଷ

൲ 

Losses ⇒  𝑉 =  ൮

𝜗 + 𝜇
−𝜗𝜉

−𝜗(1 − 𝜉)
0

0
𝜇 + 𝛼ଵ + 𝛾ଵ + 𝜚

0
0

0
0

𝜇 + 𝛼ଶ + 𝛾ଶ + 𝜍
0

0
0
0
ψ

൲ 

Thus, the basic reproducƟon ℛ଴ of the model (3) is the spectral radius of the next-generaƟon 
matrix 𝐹𝑉ିଵ. It follows then that the associated reproducƟon number, denoted by ℛ଴, is given 
by 

ℛ଴ = ℛ଴௛ + ℛ଴௥

=
𝑄ଵ𝑄ଶ𝑄ସ𝛽ଷ + 𝑄ଶ𝑄ଷ𝜑ψ𝛽ଵ + 𝑄ସ𝜗𝜉ψ𝛽ଵ

𝑄ଵ𝑄ଶ𝑄ସψ
                                                              (7) 

Where   

ℛ଴௛

=
𝛽ଵ(𝑄ଶ𝑄ଷ𝜑 + 𝑄ସ𝜗𝜉)

𝑄ଵ𝑄ଶ𝑄ସ
                                                                                                                       (8) 

ℛ଴௥

=
𝛽ଷ

ψ
                                                                                                                                                        (9) 

 With 𝑄ଵ = (𝜗 + 𝜇), 𝑄ଶ = (𝜇 + 𝛼ଵ + 𝛾ଵ + 𝜚), 𝑄ଷ = 𝜗 − 𝜗𝜉, 𝑄ସ = (𝜇 + 𝛼ଶ + 𝛾ଶ +
𝜍) 𝑎𝑛𝑑 𝑄ହ = (𝜇 + 𝛿 +
𝛾ଷ)                                                                                                                       (10)  

The threshold quanƟty ℛ଴ given in (7) defined the quanƟty ℛ଴௛  (the basic reproducƟon 
number of human populaƟon) and ℛ଴௥  (the basic reproducƟon number of rodent populaƟon) 
which measures the contribuƟon of Lassa fever risk caused by human and rodent populaƟon 
respecƟvely, it can be observed that the rise in any of the threshold quanƟty results in the 
high risk of Lassa fever in the populaƟon.  

4 Existence and uniqueness of soluƟons of the model  

Examine the existence and uniqueness of the soluƟons of the Caputo– Fabrizio fracƟonal 
model for dynamics of Lass fever epidemic in Eq. (3) with iniƟal condiƟons (4). Using fixed 
point theory [33, 34], we can prove the existence of soluƟons for the model as follows 

Applying the Caputo–Fabrizio fracƟonal integral operator in both sides of Eq. (3), we have 

 𝑆(𝑡) − 𝑆(0) = 𝐶𝐹ூ௧
ఘଵ[Π + ϕ𝑅 − (𝜆௛ + 𝜇)𝑆], 

 𝐸(𝑡) − 𝐸(0) = 𝐶𝐹ூ௧
ఘଶ[𝜆௛𝑆 − (𝜗 + 𝜇)𝐸],                                                                               

 𝐼ଵ(𝑡) − 𝐼ଵ(0) = 𝐶𝐹ூ௧
ఘଷ[ 𝜗𝜉𝐸 − (𝛾ଵ + 𝜚 + 𝜇 + 𝛼ଵ)𝐼ଵ], 
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 𝐼ଶ(𝑡) − 𝐼ଶ(0) = 𝐶𝐹ூ ௧
ఘସ[𝜗(1 − 𝜉)𝐸 − (𝛾ଶ + 𝜍 + 𝜇 + 𝛼ଶ)𝐼ଶ], 

 𝑇(𝑡) − 𝑇(0) = 𝐶𝐹ூ௧
ఘହ[𝜚𝐼ଵ + 𝜍𝐼ଶ − (𝛾ଷ + 𝜇 + 𝛿)𝑇  ],                                                                  (11) 

 𝑅(𝑡) − 𝑅(0) = 𝐶𝐹ூ௧
ఘ଺[𝛾ଵ𝐼ଵ + 𝛾ଶ𝐼ଶ + 𝛾ଷ𝑇 − (ϕ + 𝜇)𝑅]                                                             

 𝑆௥(𝑡) − 𝑆௥(0) = 𝐶𝐹ூ௧
ఘ଻[ Λ − (𝜆௥ + ψ)𝑆௥], 

 𝐼௥(𝑡) − 𝐼௥(0) = 𝐶𝐹ூ௧
ఘ଼[𝜆௥𝑆௥ − ψ𝐼௥], 

Then, the kernels of the model system can be wriƩen as follows 

 𝐾ଵ(𝑡, 𝑠) = Π + ϕ𝑅 − (𝜆௛ + 𝜇)𝑆 , 

 𝐾ଶ(𝑡, 𝐸) =  𝜆௛𝑆(𝑡) − (𝜗 + 𝜇)𝐸(𝑡),                                       

𝐾ଷ(𝑡, 𝐼ଵ) =  𝜗𝜉𝐸(𝑡) − (𝛾ଵ + 𝜚 + 𝜇 + 𝛼ଵ)𝐼ଵ(𝑡), 

 𝐾ସ(𝑡, 𝐼ଶ) =  𝜗(1 − 𝜉)𝐸(𝑡) − (𝛾ଶ + 𝜍 + 𝜇 + 𝛼ଶ)𝐼ଶ(𝑡),                                                               (12) 

 𝐾ହ(𝑡, 𝑇) = 𝜚𝐼ଵ(𝑡) + 𝜍𝐼ଶ(𝑡) − (𝛾ଷ + 𝜇 + 𝛿)𝑇(𝑡), 

 𝐾଺(𝑡, 𝑅) =  𝛾ଵ𝐼ଵ(𝑡) + 𝛾ଶ𝐼ଶ(𝑡) + 𝛾ଷ𝑇(𝑡) − (ϕ + 𝜇)𝑅(𝑡),                                                                 

𝐾଻(𝑡, 𝑆௥) =  Λ − (𝜆௥ + ψ)𝑆௥(𝑡), 

 𝐾଼(𝑡, 𝐼௥) = 𝜆௥𝑆௥(𝑡) − ψ𝐼௥(𝑡), 

and the funcƟons 

 Λ(𝜌) =
ଶ(ଵିఘ)

(ଶିఘ)ெ(ఘ)
  𝑎𝑛𝑑  Δ(𝜌) =

ଶఘ

(ଶିఘ)ெ(ఘ)
                                                                               (13) 

In proving the following theorems, we will assume that 𝑆, 𝐸,  𝐼ଵ,  𝐼ଶ, 𝑇, 𝑅, and  𝑆௥ ,  𝐼௥  are 
nonnegaƟve bounded funcƟons,           

i.e.,‖𝑆(𝑡)‖ ≤ 𝜃ଵ, ‖𝐸(𝑡)‖ ≤ 𝜃ଶ, ‖ 𝐼ଵ(𝑡)‖ ≤ 𝜃ଷ, ‖ 𝐼ଶ(𝑡)‖ ≤ 𝜃ସ, ‖𝑇(𝑡)‖ ≤ 𝜃ହ, ‖𝑅(𝑡)‖ ≤
𝜃଺, ‖ 𝑆௥(𝑡)‖ ≤ 𝜃଻𝑎𝑛𝑑  ‖ 𝐼௥(𝑡)‖ ≤  𝜃଼  

𝑤ℎ𝑒𝑟𝑒 𝜃ଵ, 𝜃ଶ, 𝜃ଷ, 𝜃ସ, 𝜃ହ, 𝜃଺, 𝜃଻ 𝑎𝑛𝑑 𝜃଼ are some posiƟve constants. Denote 

 ℵଵ = 𝜆௛ + 𝜇, ℵଶ = 𝜗 + 𝜇,  ℵଷ = 𝜇 + 𝛾, ℵସ = 𝛾ଵ + 𝜚 + 𝜇 + 𝛼ଵ, ℵହ = 𝛾ଶ + 𝜍 + 𝜇 + 𝛼ଶ,  ℵ଺ =
𝜇 + 𝛾, ℵ଻ = ψ 𝑎𝑛𝑑 ℵ଼ = 𝜆௥ +
ψ,                                                                                                          (14) 

Applying the definiƟon of the Caputo–Fabrizio fracƟonal integral in Eq. (11), we obtain. 

 𝑆(𝑡) − 𝑆(0) = Λ(𝜌ଵ)𝐾ଵ(𝑡, 𝑆) + Δ(𝜌ଵ) ∫ 𝐾ଵ(𝑦, 𝑆)𝑑𝑦
௧

଴
, 

 𝐸(𝑡) − 𝐸(0) = Λ(𝜌ଶ)𝐾ଶ(𝑡, 𝐸) + Δ(𝜌ଶ) ∫ 𝐾ଶ(𝑦, 𝐸)𝑑𝑦
௧

଴
,                                                                   

 𝐼ଵ(𝑡) − 𝐼ଵ(0) = Λ(𝜌ଷ)𝐾ଷ(𝑡, 𝐼ଵ) + Δ(𝜌ଷ) ∫ 𝐾ଷ(𝑦, 𝐼ଵ)𝑑𝑦
௧

଴
, 

 𝐼ଶ(𝑡) − 𝐼ଶ(0) = Λ(𝜌ସ)𝐾ସ(𝑡, 𝐼ଶ) + Δ(𝜌ସ) ∫ 𝐾ସ(𝑦, 𝐼ଶ)𝑑𝑦
௧

଴
, 

 𝑇(𝑡) − 𝑇(0) = Λ(𝜌ହ)𝐾ହ(𝑡, 𝑇) + Δ(𝜌ହ) ∫ 𝐾ହ(𝑦, 𝑇)𝑑𝑦
௧

଴
,                                                                  (15) 
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 𝑅(𝑡) − 𝑅(0) = Λ(𝜌଺)𝐾଺(𝑡, 𝑅) + Δ(𝜌଺) ∫ 𝐾଺(𝑦, 𝑅)𝑑𝑦
௧

଴
                                                             

 𝑆௥(𝑡) − 𝑆௥(0) = Λ(𝜌଻)𝐾଻(𝑡, 𝑆௥) + Δ(𝜌଻) ∫ 𝐾଻(𝑦, 𝑆௥)𝑑𝑦
௧

଴
, 

 𝐼௥(𝑡) − 𝐼௥(0) = Λ(𝜌଼)𝐾଼(𝑡, 𝐼௥) + Δ(𝜌଼) ∫ 𝐾଼(𝑦, 𝐼௥)𝑑𝑦
௧

଴
, 

Theorem1:If the following inequality holds 0 ≤ 𝑀 = max{ℵଵ, ℵଶ, ℵଷ, ℵସ, ℵହ, ℵ଺, ℵ଻, ℵ଼} <
1(16) 

then the kernels 𝐾ଵ, 𝐾ଶ, 𝐾ଷ, 𝐾ସ, 𝐾ହ, 𝐾଺, 𝐾଻ 𝑎𝑛𝑑 𝐾଼ saƟsfy Lipschitz condiƟons and are 
contracƟon mappings.  

Proof. We consider the kernel 𝐾ଵ. Let S and 𝑆ଵ be any two funcƟons, then we have 

‖𝐾ଵ(𝑡, 𝑆) − 𝐾ଵ(𝑡, 𝑆ூ)‖ = ‖−𝜆௛(𝑆(𝑡) − 𝑆ଵ(𝑡)) − 𝜇(𝑆(𝑡) − 𝑆ଵ(𝑡))‖                                      (17) 

Using the triangle inequality for norms on the right-hand side of Eq. (14), we obtain 

 ‖𝐾ଵ(𝑡, 𝑆) − 𝐾ଵ(𝑡, 𝑆ூ)‖ ≤ ฮ−𝜆௛൫𝑆(𝑡) − 𝑆ଵ(𝑡)൯ฮ + ฮ𝜇൫𝑆(𝑡) − 𝑆ଵ(𝑡)൯ฮ ≤ (𝜆௛ + 𝜇)‖𝑆(𝑡) −
𝑆ଵ(𝑡)‖ ≤ (𝜆௛ + 𝜇)‖𝑆(𝑡) − 𝑆ଵ(𝑡)‖ = ℵଵ‖𝑆(𝑡) − 𝑆ଵ(𝑡)‖.                                         (18) 

Where ℵଵ is defined in Eq. (12). Similar results for the kernels 𝐾ଶ, 𝐾ଷ, 𝐾ସ, 𝐾ହ, 𝐾଺, 𝐾଻ 𝑎𝑛𝑑 𝐾଼ can 
be obtained using {𝐸, 𝐸ଵ},൛𝐼ଵ, 𝐼ଵଵ

ൟ, ൛𝐼ଶ, 𝐼ଶଵ
ൟ,{𝑇, 𝑇ଵ}, {𝑅, 𝑅ଵ},൛𝑆௥ , 𝑆௥ଵ

ൟ𝑎𝑛𝑑 ൛𝐼௥, 𝐼௥ଵ
ൟ, respecƟvely, 

as follows: 

 

 ‖𝐾ଶ(𝑡, 𝐸) − 𝐾ଶ(𝑡, 𝐸ூ)‖ ≤ ℵଶ‖𝐼(𝑡) − 𝐼ଵ(𝑡)‖ 

ฮ𝐾ଷ(𝑡, 𝐼ଵ) − 𝐾ଷ൫𝑡, 𝐼ଵூ
൯ฮ ≤ ℵଷฮ𝐼ଵ(𝑡) − 𝐼ଵଵ

(𝑡)ฮ                                                                           

 ฮ𝐾ସ(𝑡, 𝐼ଶ) − 𝐾ସ൫𝑡, 𝐼ଶூ
൯ฮ ≤ ℵସ‖𝐼ଶ(𝑡) − 𝐼ଶ(𝑡)‖ 

B‖𝐾ହ(𝑡, 𝑇) − 𝐾ହ(𝑡, 𝑇ூ)‖ ≤ ℵହ‖𝑇(𝑡) − 𝑇ଵ(𝑡)‖ 

‖𝐾଺(𝑡, 𝑅) − 𝐾଺(𝑡, 𝑅ூ)‖ ≤ ℵ଺‖𝑅(𝑡) − 𝑅ଵ(𝑡)‖                                                                           (19) 

 ฮ𝐾଻(𝑡, 𝑆௥) − 𝐾଻൫𝑡, 𝑆௥ூ
൯ฮ ≤ ℵ଻ฮ𝑆௥(𝑡) − 𝑆௥ଵ

(𝑡)ฮ 

  ฮ𝐾଼(𝑡, 𝑉) − 𝐾଼൫𝑡, 𝐼௥ூ
൯ฮ ≤ ℵ଼ฮ𝑆௥(𝑡) − 𝑆௥ଵ

(𝑡)ฮ 

 

where ℵଵ, ℵଶ, ℵଷ, ℵସ, ℵହ, ℵ଺, ℵ଻ 𝑎𝑛𝑑 ℵ଼ are defined in Eq. (12). Therefore, the Lipschitz 
condiƟons are saƟsfied for 𝐾ଶ, 𝐾ଷ, 𝐾ସ, 𝐾ହ, 𝐾଺, 𝐾଻ 𝑎𝑛𝑑 𝐾଼. In addiƟon, since 0 ≤ 𝑀 =
max{ℵଵ, ℵଶ, ℵଷ, ℵସ, ℵହ, ℵ଺, ℵ଻, ℵ଼} < 1, the kernels are contracƟons. From Eq. (15), the state 
variables can be displayed in terms of the kernels as follows: 

  𝑆(𝑡) = 𝑆(0) + Λ(𝜌ଵ)𝐾ଵ(𝑡, 𝑆) + Δ(𝜌ଵ) ∫ 𝐾ଵ(𝑦, 𝑆)𝑑𝑦
௧

଴
, 

 𝐸(𝑡) = 𝐸(0) + Λ(𝜌ଶ)𝐾ଶ(𝑡, 𝐸) + Δ(𝜌ଶ) ∫ 𝐾ଶ(𝑦, 𝐸)𝑑𝑦
௧

଴
,                                                                   

 𝐼ଵ(𝑡) = 𝐼ଵ(0) + Λ(𝜌ଷ)𝐾ଷ(𝑡, 𝐼ଵ) + Δ(𝜌ଷ) ∫ 𝐾ଷ(𝑦, 𝐼ଵ)𝑑𝑦
௧

଴
, 

 𝐼ଶ(𝑡) = 𝐼ଶ(0) + Λ(𝜌ସ)𝐾ସ(𝑡, 𝐼ଶ) + Δ(𝜌ସ) ∫ 𝐾ସ(𝑦, 𝐼ଶ)𝑑𝑦
௧

଴
, 
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 𝑇(𝑡) = 𝑇(0) + Λ(𝜌ହ)𝐾ହ(𝑡, 𝑇) + Δ(𝜌ହ) ∫ 𝐾ହ(𝑦, 𝑇)𝑑𝑦
௧

଴
,                                                                  (20) 

 𝑅(𝑡) = 𝑅(0) + Λ(𝜌଺)𝐾଺(𝑡, 𝑅) + Δ(𝜌଺) ∫ 𝐾଺(𝑦, 𝑅)𝑑𝑦
௧

଴
                                                             

 𝑆௥(𝑡) = 𝑆௥(0) + Λ(𝜌଻)𝐾଻(𝑡, 𝑆௥) + Δ(𝜌଻) ∫ 𝐾଻(𝑦, 𝑆௥)𝑑𝑦
௧

଴
, 

 𝐼௥(𝑡) = 𝐼௥(0) + Λ(𝜌଼)𝐾଼(𝑡, 𝐼௥) + Δ(𝜌଼) ∫ 𝐾଼(𝑦, 𝐼௥)𝑑𝑦
௧

଴
, 

Using Eq. (20), we now introduce the following recursive formulas: 

 𝑆௡(𝑡) = Λ(𝜌ଵ)𝐾ଵ(𝑡, 𝑆௡ିଵ) + Δ(𝜌ଵ) ∫ 𝐾ଵ(𝑦, 𝑆௡ିଵ)𝑑𝑦
௧

଴
, 

 𝐸௡(𝑡) = Λ(𝜌ଶ)𝐾ଶ(𝑡, 𝐸௡ିଵ) + Δ(𝜌ଶ) ∫ 𝐾ଶ(𝑦, 𝐸௡ିଵ)𝑑𝑦
௧

଴
,                                                                   

 𝐼௡ଵ(𝑡) = Λ(𝜌ଷ)𝐾ଷ൫𝑡, 𝐼(௡ିଵ)ଵ൯ + Δ(𝜌ଷ) ∫ 𝐾ଷ൫𝑦, 𝐼(௡ିଵ)ଵ൯𝑑𝑦
௧

଴
, 

 𝐼௡ଶ(𝑡) = Λ(𝜌ସ)𝐾ସ൫𝑡, 𝐼(௡ିଵ)ଶ൯ + Δ(𝜌ସ) ∫ 𝐾ସ൫𝑦, 𝐼(௡ିଵ)ଶ൯𝑑𝑦
௧

଴
,                                                            (21) 

 𝑇௡(𝑡) = Λ(𝜌ହ)𝐾ହ(𝑡, 𝑇௡ିଵ) + Δ(𝜌ହ) ∫ 𝐾ହ(𝑦, 𝑇௡ିଵ)𝑑𝑦
௧

଴
,                                                                   

 𝑅௡(𝑡) = Λ(𝜌଺)𝐾଺(𝑡, 𝑅௡ିଵ) + Δ(𝜌଺) ∫ 𝐾଺(𝑦, 𝑅௡ିଵ)𝑑𝑦
௧

଴
                                                             

 𝑆௡௥(𝑡) = Λ(𝜌଻)𝐾଻൫𝑡, 𝑆(௡ିଵ)௥൯ + Δ(𝜌଻) ∫ 𝐾଻൫𝑦, 𝑆(௡ିଵ)௥൯𝑑𝑦
௧

଴
, 

 𝐼௡௥(𝑡) = Λ(𝜌଼)𝐾଼൫𝑡, 𝐼(௡ିଵ)௥൯ + Δ(𝜌଼) ∫ 𝐾଼൫𝑦, 𝐼(௡ିଵ)௥൯𝑑𝑦
௧

଴
, 

The iniƟal components of the above recursive formulas are determined by the given iniƟal 
condiƟons as follows:  

 𝑆଴(𝑡) = 𝑆(0), 𝐸଴(𝑡) = 𝐸(0), 𝐼ଵ଴
(𝑡) = 𝐼ଵ(0), 𝐼ଶ଴

(𝑡) = 𝐼ଶ(0) 

 𝑇଴(𝑡) = 𝑇(0), 𝑅଴(𝑡) = 𝑅(0), 𝑆௥଴
(𝑡) = 𝑆௥(0), 𝐼௥଴

(𝑡) = 𝐼௥(0)                                        (22) 

The differences between the consecuƟve terms for the recursive formulas can be wriƩen as 

Φଵ௡(𝑡) = 𝑆௡(𝑡) − 𝑆௡ିଵ(𝑡)
= Λ(𝜌ଵ)(𝐾ଵ(𝑡, 𝑆௡ିଵ) − 𝐾ଵ(𝑡, 𝑆௡ିଶ))

+ Δ(𝜌ଵ) න (𝐾ଵ൫𝑦, 𝑆௡ିଵ − 𝐾ଵ(𝑡, 𝑆௡ିଶ)൯𝑑𝑦
௧

଴

, 

Φଶ௡(𝑡) = 𝐸௡(𝑡) − 𝐸௡ିଵ(𝑡)
= Λ(𝜌ଶ)(𝐾ଶ(𝑡, 𝐸௡ିଵ) − 𝐾ଶ(𝑡, 𝐸௡ିଶ))

+ Δ(𝜌ଶ) න (𝐾ଶ൫𝑦, 𝐸௡ିଵ − 𝐾ଶ(𝑡, 𝐸௡ିଶ)൯𝑑𝑦                                                             
௧

଴

(23) 

Φଷ௡(𝑡) = 𝐼ଵ௡
(𝑡) − 𝐼ଵ௡ିଵ

= Λ(𝜌ଷ)(𝐾ଷ൫𝑡, 𝐼ଵ௡ିଵ൯ − 𝐾ଷ൫𝑡, 𝐼ଵ௡ିଶ൯) + Δ(𝜌ଷ) න (𝐾ଷ ቀ𝑦, 𝐼ଵ௡ିଵ − 𝐾ଷ൫𝑡, 𝐼ଵ௡ିଶ൯ቁ 𝑑𝑦
௧

଴

, 

Φସ௡(𝑡) = 𝐼ଶ௡
(𝑡) − 𝐼ଶ௡ିଵ

(𝑡)

= Λ(𝜌ସ)(𝐾ସ൫𝑡, 𝐼ଶ௡ିଵ
൯ − 𝐾ସ൫𝑡, 𝐼ଶ௡ିଶ

൯) + Δ(𝜌ସ) න (𝐾ସ ቀ𝑦, 𝐼ଶ௡ିଵ
− 𝐾ସ൫𝑡, 𝐼ଶ௡ିଶ

൯ቁ 𝑑𝑦
௧

଴

, 
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Φହ௡(𝑡) = 𝑇௡(𝑡) − 𝑇௡ିଵ(𝑡)
= Λ(𝜌ହ)(𝐾ହ(𝑡, 𝑇௡ିଵ) − 𝐾ହ(𝑡, 𝑇௡ିଶ))

+ Δ(𝜌ହ) න (𝐾ହ൫𝑦, 𝑇௡ିଵ − 𝐾ହ(𝑡, 𝑇௡ିଶ)൯𝑑𝑦
௧

଴

, 

Φ଺௡(𝑡) = 𝑅(𝑡) − 𝑅௡ିଵ(𝑡)
= Λ(𝜌଺)(𝐾଺(𝑡, 𝑅௡ିଵ) − 𝐾଺(𝑡, 𝑅௡ିଶ))

+ Δ(𝜌଺) න (𝐾଺൫𝑦, 𝑅௡ିଵ − 𝐾଺(𝑡, 𝑅௡ିଶ)൯𝑑𝑦
௧

଴

, 

Φ଻௡(𝑡) = 𝑆௥௡
(𝑡) − 𝑆௥௡ିଵ

(𝑡)

= Λ(𝜌଻)(𝐾଻൫𝑡, 𝑆௥௡ିଵ൯ − 𝐾଻൫𝑡, 𝑆௥௡ିଶ൯)

+ Δ(𝜌଻) න (𝐾଻ ቀ𝑦, 𝑆௥௡ିଵ − 𝐾଻൫𝑡, 𝑆௥௡ିଶ൯ቁ 𝑑𝑦
௧

଴

, 

Φ଼௡(𝑡) = 𝐼௥௡
(𝑡) − 𝐼௥௡ିଵ

(𝑡)

= Λ(𝜌଼)(𝐾଼൫𝑡, 𝐼௥௡ିଵ൯ − 𝐾଼൫𝑡, 𝐼௥௡ିଶ൯) + Δ(𝜌଼) න (𝐾଼ ቀ𝑦, 𝐼௥௡ିଵ − 𝐾଼൫𝑡, 𝐼௥௡ିଶ൯ቁ 𝑑𝑦
௧

଴

, 

For    𝑆௡(𝑡) = ∑ Φଵ௜(𝑡)௡
௜ୀଵ ,𝐸௡(𝑡) = ∑ Φଶ௜(𝑡)௡

௜ୀଵ , 𝐼1௡
(𝑡) = ∑ Φଷ௜(𝑡)௡

௜ୀଵ ,𝐼2௡
(𝑡) = ∑ Φସ௜(𝑡)௡

௜ୀଵ  

,𝑇௡(𝑡) = ∑ Φହ௡௜
(𝑡)௡

௜ୀଵ ,  𝑅௡(𝑡) = ∑ Φ଺௜(𝑡)௡
௜ୀଵ , 𝑆𝑟௡

(𝑡) = ∑ Φ଻௜(𝑡)௡
௜ୀଵ ,𝐼𝑟௡

(𝑡) =

∑ Φ଼௜(𝑡)௡
௜ୀଵ   (24) 

 

Now let generate the recursive inequaliƟes for the differences 
Φଵ௡, Φଶ௡ , Φଷ௡ , Φସ௡ , Φହ௡ , Φ଺௡ , Φ଻௡ 𝑎𝑛𝑑 Φ଼௡ as follows 

‖Φଵ௡(𝑡)‖ = ‖𝑆௡(𝑡) − 𝑆௡ିଵ(𝑡)‖

= ብΛ(𝜌ଵ)(𝐾ଵ(𝑡, 𝑆௡ିଵ) − 𝐾ଵ(𝑡, 𝑆௡ିଶ))

+ Δ(𝜌ଵ) න (𝐾ଵ൫𝑦, 𝑆௡ିଵ

௧

଴

− 𝐾ଵ(𝑡, 𝑆௡ିଶ)൯𝑑𝑦ብ                                                                    (25) 

Using t triangle inequality for norms to Eq. (25), we have 

‖𝑆௡(𝑡) − 𝑆௡ିଵ(𝑡)‖ = ‖Λ(𝜌ଵ) ∥ 𝐾ଵ(𝑡, 𝑆௡ିଵ) − 𝐾ଵ(𝑡, 𝑆௡ିଶ)‖ +  Δ(𝜌ଵ) ∫ ‖𝐾ଵ(𝑦, 𝑆௡ିଵ) −
௧

଴

𝐾ଵ(𝑡, 𝑆௡ିଶ)‖𝑑𝑦                                                                                                          

Then, since the kernel 𝐾ଵ saƟsfies the Lipschitz condiƟon with Lipschitz constant ℵଵ, we have 
 ‖𝑆௡(𝑡) − 𝑆௡ିଵ(𝑡)‖ ≤ ‖Λ(𝜌ଵ)ℵଵ ∥ 𝑆௡ିଵ − 𝑆௡ିଶ‖ +  Δ(𝜌ଵ)ℵଵ ∫ ‖𝑆௡ିଵ − 𝑆௡ିଶ‖𝑑𝑦

௧

଴
                      

(26) 

therefore, we have 

 ‖Φଵ௡(𝑡)‖ ≤ Λ(𝜌ଵ)ℵଵฮΦଵ(௡ିଵ)(𝑡)ฮ +

 Δ(𝜌ଵ)ℵଵ ∫ ฮΦଵ(௡ିଵ)(𝑦)ฮ𝑑𝑦
௧

଴
                                            (27) 

Following the same procedures, we have 
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 ‖Φଶ௡(𝑡)‖ ≤ Λ(𝜌ଶ)ℵଶฮΦଶ(௡ିଵ)(𝑡)ฮ +  Δ(𝜌ଶ)ℵଶ ∫ ฮΦଶ(௡ିଵ)(𝑦)ฮ𝑑𝑦
௧

଴
 

‖Φଷ௡(𝑡)‖ ≤ Λ(𝜌ଷ)ℵଷฮΦଷ(௡ିଵ)(𝑡)ฮ +  Δ(𝜌ଷ)ℵଷ ∫ ฮΦଷ(௡ିଵ)(𝑦)ฮ𝑑𝑦
௧

଴
                                                      

(28) 

 ‖Φସ௡(𝑡)‖ ≤ Λ(𝜌ସ)ℵସฮΦସ(௡ିଵ)(𝑡)ฮ +  Δ(𝜌ସ)ℵସ ∫ ฮΦସ(௡ିଵ)(𝑦)ฮ𝑑𝑦
௧

଴
 

 ‖Φହ௡(𝑡)‖ ≤ Λ(𝜌ହ)ℵହฮΦହ(௡ିଵ)(𝑡)ฮ +  Δ(𝜌ହ)ℵହ ∫ ฮΦହ(௡ିଵ)(𝑦)ฮ𝑑𝑦
௧

଴
 

 ‖Φ଺௡(𝑡)‖ ≤ Λ(𝜌଺)ℵ଺ฮΦ଺(௡ିଵ)(𝑡)ฮ +  Δ(𝜌଺)ℵ଺ ∫ ฮΦ଺(௡ିଵ)(𝑦)ฮ𝑑𝑦
௧

଴
 

 ‖Φ଻௡(𝑡)‖ ≤ Λ(𝜌଻)ℵ଻ฮΦ଻(௡ିଵ)(𝑡)ฮ +  Δ(𝜌଻)ℵ଻ ∫ ฮΦ଻(௡ିଵ)(𝑦)ฮ𝑑𝑦
௧

଴
 

 ‖Φ଼௡(𝑡)‖ ≤ Λ(𝜌଼)ℵ଼ฮΦ଼(௡ିଵ)(𝑡)ฮ +  Δ(𝜌଼)ℵ଼ ∫ ฮΦ଼(௡ିଵ)(𝑦)ฮ𝑑𝑦
௧

଴
 

Theorem 5. If there exists a Ɵme 𝑡଴ > 0 such that the following inequaliƟes hold:Λ(𝜌ଵ)ℵଵ +
Δ(𝜌ଵ) ℵଵ𝑡଴ > 1,     𝑓𝑜𝑟 𝑖 = 1,2, … ,8,                                                                                                              (29) 

then a system of soluƟons exists for the fracƟonal Lassa fever model (3)– (4).  

Proof. Since the funcƟons 𝑆(𝑡), 𝐸(𝑡),  𝐼ଵ(𝑡),  𝐼ଶ(𝑡), 𝑇(𝑡), 𝑅(𝑡), 𝑆௥(𝑡) 𝑎𝑛𝑑  𝐼௥(𝑡) are assumed 
to be bounded and each of the kernels saƟsfies a Lipschitz condiƟon, the following relaƟons 
can be obtained. 

 Using Eqs. (27)– (28) recursively: 

 ‖Φଵ௡(𝑡)‖ ≤ ‖𝑆(0)‖[Λ(𝜌ଵ)ℵଵ +  Δ(𝜌ଵ)ℵଵ]௡  

 ‖Φଶ௡(𝑡)‖ ≤ ‖𝐸(0)‖ [Λ(𝜌ଶ)ℵଶ +  Δ(𝜌ଶ)ℵଶ]௡ 

‖Φଷ௡(𝑡)‖ ≤ ‖ 𝐼ଵ(0)‖[Λ(𝜌ଷ)ℵଷ +  Δ(𝜌ଷ)ℵଷ]௡                                                                                        (30) 

 ‖Φସ௡(𝑡)‖ ≤ ‖ 𝐼ଶ(0)‖[Λ(𝜌ସ)ℵସ +  Δ(𝜌ସ)ℵସ]௡ 

 ‖Φହ௡(𝑡)‖ ≤ ‖𝑇(0)‖[Λ(𝜌ହ)ℵହ +  Δ(𝜌ହ)ℵହ]௡ 

 ‖Φ଺௡(𝑡)‖ ≤ ‖𝑅(0)‖[Λ(𝜌଺)ℵ଺ +  Δ(𝜌଺)ℵ଺]௡ 

 ‖Φ଻௡(𝑡)‖ ≤ ‖ 𝑆௥(0)‖[Λ(𝜌଻)ℵ଻ +  Δ(𝜌଻)ℵ଻]௡ 

 ‖Φ଼௡(𝑡)‖ ≤ ‖ 𝐼௥(0)‖[Λ(𝜌଼)ℵ଼ +  Δ(𝜌଼)ℵ଼]௡ 

EquaƟon (30) shows the existence and smoothness of the funcƟons defined in Eq. (25). To 
complete the proof, we prove that the funcƟons 
𝑆௡(𝑡), 𝐸௡(𝑡),  𝐼ଵ௡

(𝑡),  𝐼ଶ௡
(𝑡), 𝑇௡(𝑡), 𝑅௡(𝑡),  𝑆௥(𝑡) 𝑎𝑛𝑑 𝐼௥(𝑡) converge to a system of soluƟons 

of (3)– (4). We introduce 𝐵௡(𝑡), 𝐶௡(𝑡),𝐸௡(𝑡),  𝐹௡(𝑡), 𝐺௡(𝑡),𝐻(𝑡), 𝑈௡(𝑡) 𝑎𝑛𝑑 𝑊௡(𝑡), as the 
remainder terms aŌer 𝑛 iteraƟons, i.e., 

 𝑆(𝑡) − 𝑆(0) = 𝑆௡(𝑡) − 𝐵௡(𝑡), 

 𝐸(𝑡) − 𝐸(0) = 𝐸௡(𝑡) − 𝐶௡(𝑡),                                                                 

 𝐼ଵ(𝑡) − 𝐼ଵ(0) = 𝐼ଵ௡
(𝑡) − 𝐸௡(𝑡), 

 𝐼ଶ(𝑡) − 𝐼ଶ(0) = 𝐼ଶ௡
(𝑡) − 𝐹௡(𝑡),                                                                                                
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  𝑇(𝑡) − 𝑇(0) = 𝑇௡(𝑡) − 𝐺௡(𝑡),,                                                                                                  (31) 

 𝑅(𝑡) − 𝑅(0) = 𝑅௡(𝑡) − 𝐻௡(𝑡),                                                             

 𝑆௥(𝑡) − 𝑆௥(0) = 𝑆௥௡
(𝑡) − 𝑈௡(𝑡), 

 𝐼௥(𝑡) − 𝐼௥(0) = 𝐼௥௡
(𝑡) − 𝑊௡(𝑡), 

Then, using the triangle inequality and the Lipschitz condiƟon for 𝐾ଵ, we have 

‖𝐵௡(𝑡)‖ = ቛΛ(𝜌ଵ)(𝐾ଵ(𝑡, 𝑆) − 𝐾ଵ൫𝑡, 𝑆௡ିଵ)൯) +  Δ(𝜌ଵ) ∫ (𝐾ଵ(𝑦, 𝑆) − 𝐾ଵ(𝑦, 𝑆௡ିଵ))𝑑𝑦
௧

଴
ቛ ≤

Λ(𝜌ଵ)‖(𝐾ଵ(𝑡, 𝑆) − 𝐾ଵ(𝑡, 𝑆௡ିଵ)‖ +  Δ(𝜌ଵ) ∫ ‖𝐾ଵ(𝑦, 𝑆) − 𝐾ଵ(𝑦, 𝑆௡ିଵ)‖𝑑𝑦
௧

଴
≤ Λ(𝜌ଵ)ℵଵ‖𝑆 −

𝑆௡ିଵ‖ +  Δ(𝜌ଵ)ℵଵ𝐵௡(𝑡)‖𝑆 − 𝑆௡ିଵ‖𝑡. 

RepeaƟng same process, we have; 

‖𝐵௡(𝑡)‖ ≤ [(Λ(𝜌ଵ) +  Δ(𝜌ଵ)𝑡)ℵଵ]௡ାଵ𝜃ଵ                                                                                      (32) 

At 𝑡଴ we have ‖𝐵௡(𝑡)‖ ≤ [(Λ(𝜌ଵ) +  Δ(𝜌ଵ)𝑡଴)ℵଵ]௡ାଵ𝜃ଵ                                                           (33)   

Taking the limit on Eq. (33) as 𝑛 → ∞ and then using condiƟon (29), we obtain‖𝐵௡(𝑡)‖ → 0. 
Using the same process as described above, we have the following relaƟons: 

‖𝐶௡(𝑡)‖ ≤ [(Λ(𝜌ଶ) +  Δ(𝜌ଶ)𝑡଴)ℵଶ]௡ାଵ𝜃ଶ                                                                                   (34) 

‖𝐸௡(𝑡)‖ ≤ [(Λ(𝜌ଷ) +  Δ(𝜌ଷ)𝑡଴)ℵଷ]௡ାଵ𝜃ଷ                                                                                   (35) 

‖𝐹௡(𝑡)‖ ≤ [(Λ(𝜌ସ) +  Δ(𝜌ସ)𝑡଴)ℵସ]௡ାଵ𝜃ସ                                                                                   (36) 

‖𝐺௡(𝑡)‖ ≤ [(Λ(𝜌ହ) +  Δ(𝜌ହ)𝑡଴)ℵହ]௡ାଵ𝜃ହ                                                                                   (37) 

‖𝐻௡(𝑡)‖ ≤ [(Λ(𝜌଺) +  Δ(𝜌଺)𝑡଴)ℵ଺]௡ାଵ𝜃଺                                                                                   (38) 

‖𝑈௡(𝑡)‖ ≤ [(Λ(𝜌଻) +  Δ(𝜌଻)𝑡଴)ℵ଻]௡ାଵ𝜃଻                                                                                   (39) 

‖𝑊௡(𝑡)‖ ≤ [(Λ(𝜌଼) +  Δ(𝜌଼)𝑡଴)ℵ଼]௡ାଵ𝜃଼                                                                                   (40) 

Similarly, taking the limit on Eqs. (34) − (40) as 𝑛 → ∞ and then using condiƟon (29), we 
have ‖𝐶௡(𝑡)‖ → 0, ‖𝐸௡(𝑡)‖ → 0 , ‖𝐹௡(𝑡)‖ → 0, ‖𝐺௡(𝑡)‖ → 0, ‖𝐻௡(𝑡)‖ → 0, ‖𝑈௡(𝑡)‖ →
0 𝑎𝑛𝑑 ‖𝑊௡(𝑡)‖ → 0. Therefore, the existence of the system of soluƟons of system (3)– (4) is 
proved.   

We now give condiƟons for the system of soluƟons to be unique.  

Theorem 6. System (3) along with the iniƟal condiƟons (4) has a unique system of soluƟons 
if the following condiƟons hold: 1 − Λ(𝜌௜)ℵ௜ + Δ(𝜌௜)ℵ௜𝑡 > 0,     𝑓𝑜𝑟 𝑖 = 1,2, … ,8, ).                
(41)  

Proof. Assume that{{𝑆(𝑡), 𝐸(𝑡),  𝐼ଵ(𝑡),  𝐼ଶ(𝑡), 𝑇(𝑡), 𝑅(𝑡),  𝑆௥(𝑡) ,  𝐼௥(𝑡) }is another set of 
soluƟons of model (3)– (4) in addiƟon to the soluƟon set 
{𝑆𝑆(𝑡), 𝐸(𝑡),  𝐼ଵ(𝑡),  𝐼ଶ(𝑡), 𝑇(𝑡), 𝑅(𝑡),  𝑆௥(𝑡) ,  𝐼௥(𝑡) } proved to exist in Theorems 4 and 5 then 

𝑆(𝑡) − 𝑆ଵ(𝑡) = Λ(𝜌ଵ)(𝐾ଵ(𝑡, 𝑆) − 𝐾ଵ(𝑡, 𝑆ଵ) + Δ(𝜌ଵ) ∫ (𝐾ଵ(𝑦, 𝑆) − 𝐾ଵ(𝑦, 𝑆ଵ))𝑑𝑦
௧

଴
,                   (42) 

Taking the norm and triangle inequality on both sides of Eq. (38), we have  
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‖𝑆(𝑡) − 𝑆ଵ(𝑡)‖ ≤ Λ(𝜌ଵ)‖𝐾ଵ(𝑡, 𝑆) − 𝐾ଵ(𝑡, 𝑆ଵ)‖ + Δ(𝜌ଵ) ∫ ‖(𝐾ଵ(𝑦, 𝑆) − 𝐾ଵ(𝑦, 𝑆ଵ)‖
௧

଴
                

 (43) 

Using the Lipschitz condiƟon for the kernel 𝐾ଵ, we find 

‖𝑆(𝑡) − 𝑆ଵ(𝑡)‖ ≤ Λ(𝜌ଵ)ℵଵ‖𝑆(𝑡) − 𝑆ଵ(𝑡)‖ + Δ(𝜌ଵ)ℵଵ𝑡‖𝑆(𝑡) − 𝑆ଵ(𝑡)‖                                     (44) 

If  Eq. (40) rearranging we obtain 

‖𝑆(𝑡) − 𝑆ଵ(𝑡)‖1 − Λ(𝜌௜)ℵ௜ + Δ(𝜌௜)ℵ௜𝑡 ≤ 0                                                                             (45) 

Finally, applying condiƟon (41) for 𝑖 =  1 to Eq. (45), we obtain 

‖𝑆(𝑡) − 𝑆ଵ(𝑡)‖ = 0                                                                                                                       (46) 

Hence  𝑆(𝑡) = 𝑆ଵ(𝑡). 

Applying a similar procedure to each of the following pairs 

 (𝐸(𝑡), 𝐸ଵ(𝑡)), (𝐼ଵ(𝑡), 𝐼ଵଵ
(𝑡)) , (𝐼ଶ(𝑡), 𝐼ଶଵ

(𝑡)), (𝑇(𝑡), 𝑇ଵ(𝑡)) (𝑅(𝑡), 𝑅ଵ(𝑡)), ( 𝑆௥(𝑡),  𝑆௥ଵ
(𝑡))  

 𝑎𝑛𝑑  ( 𝐼௥(𝑡),  𝐼௥ଵ
(𝑡)). 

with inequality (41) 𝑓𝑜𝑟 𝑖 = 1,2, … ,8, respecƟvely, we have 

  𝐸(𝑡) = 𝐸ଵ(𝑡), 𝐼ଵ(𝑡) = 𝐼ଵଵ
(𝑡) , 𝐼ଶ(𝑡) = 𝐼ଶଵ

(𝑡), 𝑇(𝑡) = 𝑇ଵ(𝑡), 𝑅(𝑡) = 𝑅ଵ(𝑡),  

 𝑆௥(𝑡) =  𝑆௥ଵ
(𝑡) 𝑎𝑛𝑑   𝐼௥(𝑡) =  𝐼௥ଵ

(𝑡).                                                                            (47) 

Thus, the uniqueness of the system of soluƟons of the fracƟonal order system is proved. 

5 Data fiƫng and sensiƟvity analysis and parameter esƟmaƟon 

To esƟmate the remaining parameter values of our Lassa fever model (1), we applied the 
model to the cumulaƟve number of reported cases from 2019 to 2021, provided by the Nigeria 
Centre for Disease Control. We developed a MATLAB program using ODE45 solvers and 
employed model data fiƫng techniques through convenƟonal nonlinear least squares 
methods, as shown in Table 3. Figure 2 provides a pictorial representaƟon of the data fiƫng 
for the model using the cumulaƟve confirmed cases. 

Using the parameter values obtained from data fiƫng, we conducted sensiƟvity analyses to 
assess the impact of different parameters on Lassa fever dynamics within the populaƟon. This 
approach enabled us to simulate various scenarios, providing insights into the potenƟal 
outcomes and effecƟveness of different intervenƟon strategies. 
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Figure 2. Data fiƫng of the Lassa fever model (1) using cumulaƟve confirmed cases in  

Parameter 
 

Descriptions Value  Source 

Π  Rate of recruitment of susceptible human  68088 [37] 
Λ 

 
Rate of recruitment of susceptible mastomys rat’s  557 [37] 

𝜇  Natural death rate of human  0.000053  
 

[37] 

ψ Natural death rate of mastomyns rat,  0.003 [36] 
𝜙 Rate at which immunity wanes after recovery 0.7246 fitted 
𝛾ଵ Recovery rate of infected human population  0.7194 fitted 
𝛾ଶ Recovery rate of infected treated human population 0.7285 fitted 
𝛾ଷ Recovery rate of infectious deceased human 

population 
1.5472 fitted 

        𝛼ଵ Disease induced death rates of individuals in 𝐼ଵ(𝑡) 0.484 [36] 
          𝛼ଶ Disease induced death rates of individuals in 𝐼ଶ(𝑡) 0.484 [36] 

𝛿 Disease induced death rate of infected individuals in 
𝑇(𝑡) compartment 

0.8 [36] 

𝜍 Rates at which infected deceased move to 
treatment class, 
 

0.4325 fitted 

𝜚 Rates at which infected humans move to treatment 
class 

0.7774 fitted 

𝜉 Proportion of new exposed individual that become 
symptomatically infected 

0.4182 fitted 

𝜗 Rate at which an exposed individual becomes 
infectious 

1.7169 fitted 

𝜑 Transmission rates due to contact with infected 
deceased  

0.4955 fitted 

𝛽ଵ Rate of human-to-human contact  0.1682 fitted 
𝛽ଶ Rate of Mastomys rat-to-human contact  0.0071 fitted 
𝛽ଷ Rate of Mastomys rat-to-mastomys rat contact  0.0209 fitted 

Table 3. Parameter values for the Lassa fever model (1) 
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6 SensiƟvity analysis  

MathemaƟcal modeling of infecƟous diseases aims to understand how diseases spread in a 
populaƟon (Panovska-Griffiths, 2020). SensiƟvity analysis is a key technique used to gain 
insights into disease dynamics by evaluaƟng the impact of different parameters on the model. 
In this study, we used ParƟal Rank CorrelaƟon Coefficients (PRCC) within MATLAB R2022b to 
idenƟfy the most sensiƟve epidemiological parameters for controlling the Lassa fever (LF) 
outbreak (Musa et al., 2020). 

Our analysis focused on how variaƟons in each parameter affect the reproducƟon number, 
which helps in developing intervenƟon strategies to control the spread of the disease. The 
sensiƟvity indices and parameter values are illustrated in Figure 3. The analysis revealed that 
posiƟve values for parameters 𝜑 , 𝜗, 𝜉, 𝛽ଵ , 𝛽ଷ 𝑎𝑛𝑑 Λ were associated with an increased 
spread of Lassa fever. Conversely, a decrease in the negaƟve values of parameters Π, 𝛾ଵ, 𝛾ଵ, 𝛾ଵ, 
𝜍 and 𝜚   was linked to a rise in transmission rates. The sensiƟvity indices showed that the 
natural mortality rate of rats ψ and the rodent-to-rodent transmission rate 𝛽ଷ had the most 
significant effects. An increase in 𝛽ଷresults in a higher reproducƟon number, while an increase 
in ψ leads to a reducƟon in the rat populaƟon. 

 

 
Figure 3. SensiƟvity indices of the Lassa fever reproducƟon number using parƟal rank correlaƟon    coefficient (PRCC)  

 

In conclusion, effecƟve control measures should focus on reducing transmission likelihood and 
the rate of rat populaƟon recruitment. Strategies to achieve this include avoiding contact with 
infected corpses (through safe burial pracƟces), promoƟng good hygiene, conducƟng 
educaƟonal campaigns, and using rodent traps or pesƟcides. These measures can significantly 
reduce the spread of Lassa fever among people. 

7  Numerical computaƟon 

We now present the numerical results and simulaƟons of the extended fracƟonal order 
mathemaƟcal model in Caputo sense with the help of the derived algorithm and numerical 
coded wriƩen in MATLAB environment using the model equaƟons and the values of the 
parameters in table 3. 
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            Fig. 
1: Numerical SimulaƟon of S(t) at different values of alpha   Fig. 2: Numerical SimulaƟon of I(t) at different 
values of alpha 

            

             
Fig. 3: Numerical SimulaƟon of R(t) at different values of alpha                        Fig. 4: Numerical SimulaƟon of D(t) at different values of alpha 

  

8  Result and discussion 

In this paper, the dynamics of Lassa fever virus model are examined via Caputo–Fabrizio 
fracƟonal order differenƟal equaƟon model approaches: Varying the values of fracƟonal-order 
α for the FODE, Due to the lack of any disease control measures, the number of suscepƟble 
and infected populaƟon dramaƟcally increases (see Figure  1), since both the suscepƟble and 
infected populaƟon live together in the environment that serves as a breeding ground for the 
bacteria and acƟvely interact among themselves, Moreover, we can easily observe from  
Figure 6 and 7 that when 𝛼 → 1 the Caputo–Fabrizio non-integer order derivaƟve reveals more 
absorbing characterisƟcs. Consequently, this causes the Lassa fever virus dynamic to stay at 
almost a constant rate for a long period of Ɵme (see Figures 2 and 4). However, the effect of 
increasing or decreasing infecƟous contact with environment in model (1) at different values 
of alpha in figure 3 indicate the vulnerability of all state variables.  

9  Conclusion 

In this paper, we examined the interacƟon between human and rodent hosts by formulaƟng 
a non-linear determinisƟc mathemaƟcal model to describe the transmission dynamics of 
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Lassa fever, using demographic data from Nigeria. This model was extended to an integer type 
using the Caputo–Fabrizio fracƟonal differenƟal equaƟon and analyzed using fixed point 
theory and an iteraƟve method. The fracƟonal model employs non-singular, exponenƟally 
decreasing kernels from the Caputo–Fabrizio fracƟonal derivaƟve, and we established the 
existence and uniqueness of soluƟons for the system. We idenƟfied the equilibrium points of 
the model and determined the condiƟons for local asymptoƟc stability of the disease-free 
equilibrium point. Numerical soluƟons of the fracƟonal system were obtained and compared 
for different values of the fracƟonal order, exploring the use of the Caputo–Fabrizio fracƟonal 
derivaƟve in modeling real-life problems involving memory effects. 

The model was parameterized using cumulaƟve confirmed cases of Lassa fever in Nigeria from 
January 2019 to December 2021, obtained from the Nigeria Centre for Disease Control 
database. SensiƟvity analysis was conducted to evaluate the significance of each parameter 
on the transmission dynamics of Lassa fever in Nigeria. The analysis idenƟfied the transmission 
coefficients Λ, 𝜚, 𝜍, 𝜑 𝛽ଵ, 𝛽ଶ 𝑎𝑛𝑑 𝛽ଷ as criƟcal control parameters influencing the transmission 
of Lassa fever. The basic reproducƟon number,  𝑅଴, was found to be greater than one ( 𝑅଴ >
1) , suggesƟng that Lassa fever is likely to remain endemic in Nigeria unless effecƟve control 
methods are implemented to reduce  𝑅଴ below unity. 

Our study explored the impact of controlled parameters on the total infected human and 
deceased populaƟons. The results indicate that combining all possible transmission control 
measures significantly reduces the burden of Lassa fever more quickly in the populaƟon. Early 
treatment of infected individuals, personal hygiene, precauƟons by health workers, proper 
burial pracƟces, educaƟonal campaigns, and the use of pesƟcides and rodent traps are 
essenƟal strategies for reducing the number of infected individuals and containing the spread 
of Lassa fever in Nigeria. 
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