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Abstract: Let Xn = {1,2, . . .,n} be a finite chain and ODCIn be the semigroup of all order-preserving and order-
decreasing partial injective contraction mappings. In this work characterisation of the ideals of the semigroup 
ODCIn is obtained analogous to the result obtained for the semigroups IOn and CPn, of all orderpreserving 
injections and of all partial contractions, also, ODCIn admit principal series. The Green’s relations and its starred 
analogue is investigated for the semigroup ODCIn in contrast with the semigroups of all partial order-decreasing 
injections and OCIn the semigroup all order-preserving partial injective contractions, ODCIn is ample. 
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1 IntroducƟon and Preliminaries 
Let Xn ={1,2, . . . ,n} be a finite chain, a mapping α: dom(α) ⊆Xn−→im(α)⊆ Xn, where dom(α) and 
im(α) denote the domain and image of α. The mapping α is called a transformaƟon, the set of all 
transformaƟons on Xn under the operaƟon of composiƟon of mappings is associaƟve and is called 
transformaƟon semigroup. The transformaƟon α is called parƟal if the domain is a subset of Xn, 
the set of all parƟal transformaƟons is called parƟal transformaƟon semigroup and denoted by 
Pn, α is called full or total transformaƟon if the domain is equal to Xn, the set all full or total 
transformaƟons is called full transformaƟon semigroup and is denoted by Tn, the set of all parƟal 
injecƟves on Xn is denoted by In is also called the symmetric inverse semigroup. 

Let α be an element in any of the semigroups Pn Tn or In, then α is said to be; orderpreserving 
(or order-reversing) if for all x,y ∈ dom(α) is such x ≤ y implies xα ≤ yα (respecƟvely, xα ≥ yα), 
order-preserving (or order-reversing) someƟmes referred to isotone(or anƟtone) Dimitrova and 
Koppitz [15] ; is said to order-decreasing if for all x,y ∈ dom(α) xα ≤ x; is isometry or distance-
preserving if | xα − yα |=| x − y |; is called a contracƟon if | xα−yα |≤| x−y | a contracƟon is 
someƟmes called compression Zhao and Yang [1]. 
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Let CPn denote the semigroup of all parƟal contracƟons; POn denote the semigroup of all 
parƟal order-preserving transformaƟons; OCPn the semigroup of all parƟal order-preserving 
contracƟons; ORCPn be the semigroup of all order-preserving or order-reversing parƟal 
contracƟons; DPn the semigroup of all parƟal isometries. Also, let CIn, OCIn, ORCIn, ODCIn and DCIn 

denote the semigroup of all parƟal injecƟve contracƟons, the semigroup of all parƟal order-
preserving injecƟve contracƟons, the semigroup of all parƟal order-preserving or order-reversing 
injecƟve contracƟons, the semigroup of all parƟal order-preserving and order-decreasing 
injecƟve contracƟons and the semigroup of all parƟal order-decreasing injecƟve contracƟons 
respecƟvely, Umar and Al-kharousi [9]. 

For transformaƟons α, β ∈ In, we use the notaƟon αβ instead α ◦ β and mulƟply from leŌ to 
right using the leŌ to right composiƟon of transformaƟons, that is, x(αβ) = (xα)β. we define the 
cardinality rank (α) = |dom(α)| = |im(α)| since α is one-one and rank (αβ) = min {rank (α),rank 
(β)}. 

A non-empty subset A of a semigroup S is called a leŌ ideal if SA ⊆ A, a right ideal if AS ⊆ A, 
and a two-sided ideal or an ideal if SAS ⊆ A. it is evident that every leŌ, right and two-sided ideal 
is a subsemigroup. Among the ideals of a semigroup S, are S itself and if S contains zero element 
then {0} is an ideal. if I is an ideal such that {0} ⊂ I ⊂ S is called proper. A semigroup S is said to be 
simple if it cantains no proper ideal, a semigroup S containing zero is 0-simple if {0} and S are the 
only ideals. 

If a is any element of a semigroup S, the smallest leŌ ideal of S containing a is Sa ∪ {a} and 
denoted by S1a, which is the principal leƞt ideal generated by a. The principal right ideal 
generated by an element a is aS ∪ {a} and denoted by aS1. The principal two-sided ideal or 
principal generated by an element a is Sa∪aS∪SaS∪{a} and denoted by S1aS1. 

The study of ideals in semigroups results naturally in considering some equivalences, the 
following equavalences were introduced by Green’s [29]. Let S be a semigroup, let a, b ∈ S, 
define an equivalence L on S by a L b if and only if S1a = S1b, that is, a and b generated the same 
principal leŌ ideal; Similarly, a R b if and only if aS1 = bS1, that is, a and b generated the same 
principal right ideal,; a J b if and only if S1aS1 = S1bS1, that is, a and b generated two-sided 
principal ideal or an ideal; a H b if and only if a L b and a R b or H = L ∩ R; a D b if and only there 
exist c ∈ S1 such that a L c and c R b, the equivalence D is also defined by D = L ◦ R, it is evident 
that L ◦ R = R ◦ L. If a is an element in a semigroup S, the equivalence classes the L, R, J , H and D-
class containing the element a will be denoted by La, Ra, Ja, Ha and Da respecƟvely. 

For starred Green’s chatacterisƟons see; ([7],[8],[14],[26]), on a semigroup S the relaƟon L∗ is 
defined by the rule that (a,b) ∈ L∗ if and only if (a,b) are related by the Green’s relaƟon L in some 
oversemigroup of S. The relaƟon R∗ is defined dually. These relaƟons also have the following 
characterisaƟons: 

 ; (1) 

 . (2) 

The join of the relaƟons L∗ and R∗ is denoted by D∗ and their intersecƟon by H∗. 

The Green’s equivalences plays a fundamental role in developing the theory of semigroup, to 
understand the structure of any semigroup, the Green’s characterisaƟon is paramount. In an 
AƩempt to develop the theory of semigroup, many reseachers studied various properƟes of 
transformaƟon semigroups and in partcular the Green’s equivalences on the semigroup Pn with 
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some of its subsemigroups over the years, many interesƟng and delighƞul results were recorded. 
For example see [2],[3],[4],[5],[8],[12],[13], [22],[17],[6]. 

Umar [21] characterised Green’s relaƟons and their starred analogue for the semigroups, finite 
order-decrease full transformaƟon semigroups and finite order-decrease parƟal one-one 
transformaƟon semigroups. Ganyushkin and Mazorchuk [10] study the semigroup of all parƟal 
order-presrvering injecƟons in which the ideals and Green’s relaƟons were characterised. 

 IOn = {α ∈ In : (∀ x,y ∈ domα) x ≤ y =⇒ xα ≤ yα} (3) 

The algebraic study of CPn, CT n and CIn the semigroup of ParƟal, full and parƟal oneone 
contracƟons was iniƟated by Umar and Al-kharousi in [9], in which the notaƟons of the 
semigroups and its subsemigroups were given, as a result of these a number of literatures 
emerged concerning the semigroups of contracƟons. Zhoa and Yang [1] characterised the 
Green’s relaƟons and regularity of elements of the semigroup of parƟal order-preserving 
transformaƟon and contracƟons 

CPOn = {α ∈ POn : (∀ x,y ∈ dom α) | xα − yα | ≤ | x − y |} = CPn ∩POn (4) 

Zubairu and Ali [30] characterised and obtained the number of the principal leŌ (right) ideals of 
the semigroups CPn and CT n, also, computed the order of elements of rank(1) and rank(2). Ali et 
al [11] generalized the result of Zhao and Yang to the semigroup of parƟal contracƟons, in which 
among other results obtained the result of Zhao and Yang in 
 CPn = {α ∈ Pn : (∀ x,y ∈ domα) | xα − yα |≤| x − y |}. (5) 
2 Ideals in some semigroups 
In this secƟon we recall some results on ideals of some semigroups which are crucial to our 
invesƟgaƟon in some of the subsequent secƟons; 

Lemma 1. [[10], proposiƟon 1] Let α ∈ IOn, then 

(1) the leŌ principal ideal IOn α equals {β: im(β) ⊆ im(α)} 

(2) the right principal ideal α IOn equals {β: dom(β) ⊆ dom(α)} 

(3) the two-sided principal ideal IOn α IOn equals {β: rank (β) ≤ rank (α)} 

we now record another result from [30] we have theorem 1.3 as lemma 2(1) and theorem 
2.1 as lemma 2(2) : 

Lemma 2. [[30], Theorem 1.3 & 2.1 ] 

(1) Let S denote the semigroup CPn. For each α ∈ S, the principal leŌ ideal generated by α has the 
following form 

Sα = {β ∈ S: dom(β) ⊆ dom(α) and πα ⊆ πβ}. 

(2) Let S denote the semigroup CPn or CT n. For each α ∈ S, the principal right ideal generated by 
α has the following form αS = {β ∈ S: im(β) ⊆ im(α)}. 
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Lemma 3. [[6], proposiƟon 4.1.2] Each leŌ (right or two − sided) ideal is a union of principal leŌ 
(right or two − sided) ideals. 

Next, we employ an example to experiment the results considered in lemma 1 and lemma 2. 

Example 1. For any  
then 

 

Example 2. For α, β as in example(1) above and any λ ∈ {CPn,IOn}, if 

 
then 

 
Remark 1. We observed from lemma 1 , 2 , example 1 , 2 and ([30] lemma 1.1) the following: 

Lemma 4. 

(i) dom(αβ) ⊆ dom(α) 

(ii) im(αβ) ⊆ im(β) 

(iii) rank (αβ) ≤ min{rank (α),rank (β)} 

Remark 2. 

(i) For any α in {CPn,IOn}, the principal leŌ ideals CPn α or IOnα of CPn or IOn respecƟvely is 
determine by the image set of α. 

(ii) For any α in {CPn,IOn}, the principal right ideals αCPn or αIOn of CPn or IOn respecƟvely is 
determine by the domain set of α. 

For every k, 0 ≤ k ≤ n, denote Ik = {β ∈ IOn: rank (β) ≤ k}. 

Lemma 5. [[28], ProposiƟon 2.3. [10], Corollary 1] All two-sided ideals of IOn are principal and form 
the following chain: 

 0 = I0 ⊂ I1 ⊂ ... ⊂ In−1 ⊂ In = IOn (6) 

Recall that 

Lemma 6. [[2] proposiƟon 3 .1 .5] If I, J are ideals of a semigroup S such that I ⊂ J and there is no 
ideal B of S such that I ⊂ B ⊂ J, then J/I is either 0-simple or null. 

Also, the Rees QuoƟent semigroup denoted by J/I or J ∪ {0} is either 0-simple or null. The 
semigroup K(S) and J/I are the principal factors, the product of two elements in J/I always falls 
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into a lower J -class. If the factor is 0-simple then the product may lie in J or may fall into a lower J 
-class. 

An ideal of a semigroup S is minimal if it does not properly contain any ideal. An ideal of a 
semigroup with zero is 0-minimal if the only proper ideal it contain is {0}. The unique minimal 
ideal is called a kernel and denoted K (S) . if S is a semigroup with zero, then K (S) = {0}. 

A principal series of a semigroup S is a finite chain of ideals 

 K (S) = I0 ⊂ I1 ⊂ . . . ⊂ In−1 ⊂ In = S (7) 

that is maximal in the sense that there is no ideal B such that Ii ⊂ B ⊂ Ii+1. As such both IOn admit 
pricipal series, however, not all semigroup admit pricipal series. 

3 Order-preserving and order-decreasing parƟal injecƟve contracƟons semigroup ODCIn 

Let α be an element in ODCIn, we denote α in tabular form by; 

 

therefore, if α saƟsfies the following; 

(i) For all ai,aj ∈ dom(α), ai ≤ aj implies bi ≤ bj (i,j ∈ {1,...,n}), thus α is order-preserving. 

(ii) For all ai ∈ dom(α), bi ≤ ai (i ∈ {1,...,n}), thus α is order-decreasing. 

(iii) For all ai ∈ dom(α), | aiα − ai−1α | ≤ | ai − ai−1 | (i ∈ {1,...,n}), thus α is contracƟon. 

(iv) For all ai,aj ∈ dom(α), ai ̸= aj =⇒ aiα ≠ ajα = bi ̸= bj, α is one-one. 

then, α is order-presevering and order-decreasing parƟal injecƟve contracƟon and 
denoted by 

ODCIn = {α ∈ OCIn: ∀ai,aj ∈ dom(α) | aiα − ajα |≤| ai − aj | and aiα ≤ ai} 
(8) the 

semigroup of all order-presevering and order-decreasing parƟal injecƟve contracƟon. 

Remark 3. It is clear that ODCIn ⊆ IOn ⊆ CPn. As such, we will use some results concerning the two 
semigroups is our study. 

Next, from lemma 1 and 2 , we now have our main results on the ideals of ODCIn. 

Theorem 1. Let α ∈ ODCIn, then the principal leŌ ideal generated by α has the form 

 ODCInα = {β ∈ ODCIn: im(β) ⊆ im(α)} (9) 
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Proof. Let α ∈ODCIn, suppose A={β ∈ ODCIn: im(β) ⊆ im(α)}. If δ ∈ODCIn, we have (x)δα = (xδ)α. by 
lemma 4 im(δα) ⊆ im(α) and thus ODCIn α ⊆ A. Conversely, consider an arbiƟry β ∈ A. We have 
im(β) ⊆ im(α). For each b ∈ im(β) choose some ab such that (ab)α = b. Consider a transformaƟon δ 
for which dom(δ) = dom(β) and such that for x ∈ dom(β) we have xδ = ab and thus (x)δα = ((x)δ)α = 
(ab)α = b, implies that A ⊆ ODCIn α as required.  

Theorem 2. Let α ∈ ODCIn, then the principal right ideal generated by α has the form 

 αODCIn = {β ∈ ODCIn: dom(β) ⊆ dom(α)} (10) 

Proof. Let A = {β ∈ ODCIn: dom(β) ⊆ dom(α)}. Suppose δ ∈ ODCIn such that, αδ = β, we have 
dom(αδ) = dom(β), but by lemma 4 dom(αδ) ⊆ dom(α) ⊆ dom(β), thus, ODCIn ⊆ A. 

Conversely, suppose β ∈ A and dom(β) ⊆ dom(α), implies that there exist δ in ODCIn such that 
β = αδ but αδ ∈ αODCIn. Hence A ⊆ ODCIn.  

Theorem 3. Let α ∈ ODCIn, then the principal two-sided ideal generated by α has the form 

 ODCInαODCIn = {β ∈ ODCIn: rank (β) ≤ rank (α)}. (11) 

Proof. Let D = {β ∈ ODCIn: rank (β) ≤ rank (α)}, by lemma 4 (iii) we have 
ODCInαODCIn ⊆ D. To show that D ⊆ ODCInαODCIn, let im(α) = {a1,a2, . . . ,ak} and β ∈ D be such 
that rank (β) = m, and im(β) = {b1,b2, . . . ,am}. Then m ≤ k and for each i = {1, . . . ,k} we choose 
some element ci in the set Ai = {x ∈ Xn: (x)α = ai}. Define λ, δ ∈ ODCIn in the following way: dom(λ} 
= dom(β}, im(δ} = im(β} and for all y in Bj={z ∈ Xn: (z)β = bj}, j = 1, . . . ,m, we set (y)λ = cj and (ai)δ = 
bj j = 1 . . . m, hence λαδ = β. which implies β ∈ ODCInαODCIn, thus, D ⊆ ODCInαODCIn, and hence 
D = ODCInαODCIn.  

Remark 4. we have from lemma 5, 6 , remark 3 and equaƟon 7 that the semigroup ODCIn admit 
principal series, as such, obtained the immediate lemma 

Lemma 7. All two-sided ideals of ODCIn are principal and forms a chain 

 0 = I0 ⊂ I1 ⊂ . . . ⊂ In−1 ⊂ In = ODCIn (12) 

Proof. Let I be a two-sided ideal in ODCIn ,by the last statement of remark 2, for k = maxβ∈I rank 
(β), and α ∈ I be an element of rank (k). Then by theorem 3 I = ODCInαODCIn = Ik  

An element a of a semigroup S is called regular if there exists x ∈ S such that axa = a, if every 
element of S is regular then the semigroup S is said to be a regular semigroup. An element e of a 
semigroup S is called idempotent provided e = e2, The set of all idempotent elements of 
semigroup S is denoted by E(S). An element a of a semigroup S with zero is called nilpotent 
provided that ak = 0 for some k ∈ N. 

The semigroup ODCIn consist of Idempotents which are parƟal idenƟƟes, an idenpotent is a 
regular element, the set E(S) of all idempotents forms a subsemigroup which is a semilaƫce 



 
 

 

arcnjournals@gmail.com                                                           Page | 66  
 
 

 

4 Green’s relaƟons for the semigroup ODCIn 

Recall the Green’s characterisaƟon of the equivalences L, R, H, D, and J stated earlier. In this 
secƟon we characterise the Green’s relaƟons for the semigroup ODCIn, but first we consider 
some definiƟons and notaƟons; 

If U is a subsemigroup of a (not necessarily regular) semigroup S, if a,b ∈ U, there can be 
ambiguity about the meaning (for example) a L b, since L may stand for the appropriate Green 
equivalence either in S or in U. when confusion of this sort is likely to arise we shall disƟnguish 
between the two equivalences. Thus (a,b) ∈ L(U) means that there exist u, v ∈ U1 such that a = 
ub, b = va, while (a,b) ∈ L(S) means that there exist s, t ∈ U1 such that a = sb, b = ta. we shall use 
the notaƟon L(U) ⊆ L(S) ∩ (U × U). Similarly we can write the notaƟons for the other 
equivalences. 

The gap of the domain and image of a transformaƟon α denoted g (dom(α)) and g (im(α)) is 
the ordered (r − 1) tuple, defined by 

g (dom(α)) = (a2 − a1,a3 − a2, . . . ,ar − ar−1) and g (im(α)) = (a2α − 
a1α,a3α − a2α, . . . ,arα − ar−1α) 

. 

Next we have our main result of this secƟon 

Theorem 4. Let α, β ∈ ODCIn, then 

(1) (α,β)∈L(ODCIn) if and only if im(α)=im(β) and g (dom(α))=g (dom(β)). 

(2) (α,β)∈R(ODCIn) if and only if dom(α)=dom(β) and g (im(α))=g (im(β)). 

(3) (α,β) ∈ H(ODCIn) if and only if α = β. 

Proof. (1) 
Let (α,β) ∈ L(ODCIn), then 

λβ = α and δα = β for some λ, δ ∈ ODCIn. Since L(ODCIn) ⊆ 
L(IOn) ∩ (ODCIn × ODCIn), it follows that im(α) = im(β). 
Conversely, let dom(α) = {a1,a2,...,ar} and dom(β) = {c1,c2,...,cr}, and suppose, | ai−aj | = | ci−cj 

| for each i, j ∈ Xn, hence g (dom(α)) = g (dom(β)). 

 

Proof. (2) 
Since ODCIn ⊂IOn, and suppose (α,β)∈R(IOn), so we have (α,β)∈R(ODCIn) for each ai ∈ dom(α), ci ∈ 

dom(β) implying ai = ci, then dom(α) = dom(β). Conversely, let im(α) = {c1,c2,...,cr} and im(β) = 
{d1,d2,...,dr}, suppose 

dom(α) = dom(β) and | ci − cj | = | di − dj | for each i, j ∈ Xn, then we have 
g (im(α)) = g (im(β)). 

Proof. (3) Follows from proof (1) and (2).  

We now have the characterisaƟon of the relaƟons D and J 
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Theorem 5. Let α,β ∈ ODCIn. Then 

(1) (α,β) ∈ D (ODCIn) if and only if g (dom(α)) = g (dom(β)) and g (im(α)) = g (im(β)) 

(2) D (ODCIn) = J (ODCIn) 

Proof. (1) 
Suppose that (α,β) ∈ D (ODCIn). Then, there exists δ ∈ ODCIn such that (α,δ) ∈ R(ODCIn) and 

(δ,β) ∈ L(ODCIn) by theorem 4. we have dom(α) = dom(δ) , g (im(α)) = g (im(δ)) and im(δ) = im(β) , 
g (dom(δ)) = g (dom(β)) which implies g (dom(α)) = g (dom(β)) and g (im(α)) = g (im(β)). 
Conversely, suppose that | im(α) | = | im(β) |, 

g (dom(α)) = g (dom(β)) and g (im(α)) = g (im(β)) then by theorem 4. it follows that 
| ai+1−ai |=| ci+1−ci | and | bi+1−bi |=| di+1−di | for each (i ∈ {1,2,...,r − 1}), this completes the 

proof. 
 

Proof. (2) The proof follows from the definiƟon of D (ODCIn) and J (ODCIn) and the fact that ODCIn 

is finite. 

 

Lemma 8. The semigroup ODCIn contains regular elements. if fact all idempotents are regular 

Proof.  

Lemma 9. For n = 1 the semigroups IOn and ODCIn coincide otherwise disƟnct and contains only the 
empty and idenƟty maps, there is nothing to proof. 

Remark 5. In view of [[14], corollary 1.3] and fact that the semigroup ODCIn contain non-isometries 
for n ≥ 2 we deduce the following lemmas 

Lemma 10. For n ≥ 2 the semigroup ODCIn is irregular. 

A subsemigroup U of a semigroup S is called a full subsemigroup if it contains all the 
idempotents of S. It is called an inverse ideal of S if for all u ∈ U, there exists u഻ ∈ S such that uu഻u 
= u and uu഻, u഻u ∈ U. 

Lemma 11. The simegroup ODCIn is an inverse ideal of IOn. 

Proof. For each α ∈ ODCIn, let x ∈ dom(α) and y ∈ im(α) be such that xα = y. Then the mapping α഻ 

: im(α) −→ dom(α) defined by yα഻ = x is in IOn (in fact α഻ is the unique inverse of α in IOn) and αα഻α = α. 
Also, αα഻ = 1dom(α) and α഻α = 1im(α). Thus, αα഻, α഻α ∈ ODCIn. 

5 Starred Green’s relaƟons for the semigroup ODCIn 

Theorem 6. Let α, β ∈ ODCIn, then 

(1) (α,β) ∈ L∗ (ODCIn) if and only if im(α) = im(β). 

(2) (α,β) ∈ R∗ (ODCIn) if and only if dom(α) = dom(β). 
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(3) (α,β) ∈ H∗ (ODCIn) if and only if im(α) = im(β) and dom(α) = dom(β) The proof is analogue of 
proof of Lemma 3.2.3 in [21]. 

Proof. (1) Certainly if im(α) = im(β) then (α,β) ∈ L(IOn) and so (α,β) ∈ L∗ (ODCIn). 

Conversely, if (α,β) ∈ L∗ (ODCIn) then by equaƟon 1 

 αδ = ατ ⇐⇒ βδ = βτ for all δ,τ ∈ ODCIn. 

However, if we denote the parƟal injecƟve idenƟty map in ODCIn on a set A by idA (A is any 
subset of Xn) then 

x /∈ im(α) ⇐⇒ α · id{x} = α · ϕ 

 i.e ⇐⇒ β · id{x} = β · ϕ since α L∗ β 

 i.e ⇐⇒ x /∈ im(β). 

 Thus, im(α) = im(β).  

Proof. (2) Certainly if dom(α) = dom(β) then (α,β) ∈ R(IOn) and so (α,β) ∈ R∗ (ODCIn). 

Conversely, if (α,β) ∈ R∗ (ODCIn) then by equaƟon 2 

 δα = τα ⇐⇒ δβ = τβ for all δ,τ ∈ ODCIn. 

And 
x /∈ dom(α) ⇐⇒ id{x} · α = ϕ · α 

 i.e ⇐⇒ id{x} · β = ϕ · β since α R∗ β 

 i.e ⇐⇒ x /∈ dom(β). 

 Thus dom(α) = dom(β).  

to characterise the D∗ as in [14], we consider the following lemma 

Lemma 12. For each α ∈ ODCIn with | im(α) | = p, there exists β ∈ ODCIn with im(β) = {1, . . .,p} such 
that (α,β) ∈ R∗ (ODCIn). 

Proof. Let dom(α) = {a1, . . .,ap}, be such that ai < ai+1 (1 ≤ i ≤ p − 1). Then | ai+1 − ai | ≥ 1 for each i = 
1, . . .,p − 1 and the mapping β defined by 

 aiβ = i (i = 1, . . .,p) 

is in ODCIn. Also, im(β)={1, . . .,p} and by theorem 6 (2) (α,β)∈R∗ (ODCIn). 
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On the semigroup ODCIn define the relaƟon K by (α,β) ∈ K (ODCIn) 
if and only if | im(α) | = | im(β) | 
by definiƟon we have 

 D∗ (ODCIn) ⊆ K(ODCIn). (13) 

now we have the following lemma 

Lemma 13. On the semigroup ODCIn, 

K (ODCIn) = R∗ (ODCIn) ◦ L∗ (ODCIn) ◦ R∗ (ODCIn) 

Proof. Suppose that (α,β) ∈ K (ODCIn), then | im(α) | = | im(β) | = p (say). Then by lemma 12, 
there exist δ, γ ∈ ODCIn with im(δ) = im(γ) = {1, . . .,p} such that (α,δ) ∈ R∗ (ODCIn) and (γ,β) ∈ R∗ 

(ODCIn) and, by theorem 6 (1), im(δ) = im(γ) implies (δ,γ) ∈ L∗ (ODCIn) and we have 

(α,β) ∈ R∗ (ODCIn) ◦ L∗ (ODCIn) ◦ R∗ (ODCIn). Thus, 

 K(ODCIn) ⊆ R∗ (ODCIn) ◦ L∗ (ODCIn) ◦ R∗ (ODCIn). (14) 

Conversely, suppose (α,β) ∈ R∗ (ODCIn) ◦ L∗ (ODCIn) ◦ R∗ (ODCIn). Then there exists δ, γ ∈ ODCIn 

such that 

(α,δ) ∈ R∗ (ODCIn), (δ,γ) ∈ L∗ (ODCIn), (γ,β) ∈ R∗ (ODCIn). 
Therefore, 

| im(α) | = | im(δ) |, | im(δ) | = | im(γ) | and | im(γ) | = | im(β) |, and so | im(α) | = 
| im(β) |. Thus (α,β) ∈ K (ODCIn), that is 

 R∗ (ODCIn) ◦ L∗ (ODCIn) ◦ R∗ (ODCIn) ⊆ K(ODCIn). (15) 

Therefore from equaƟons 14 and 15 the result follows. 

For α, β ∈ ODCIn, let K(ODCIn) = R∗ (ODCIn) ◦ L∗ (ODCIn) ◦ R∗ (ODCIn), then there exist δ, γ ∈ ODCIn 

such that (α,δ) ∈ R∗ (ODCIn), (δ,γ) ∈ L∗ (ODCIn) and (γ,β) ∈ R∗ (ODCIn). Therefore we have (α,x1) ∈ L∗ 

(ODCIn), (x1,x2) ∈ R∗ (ODCIn), (x2,x3) ∈ L∗ (ODCIn) and (x3,β) ∈ R∗ (ODCIn), were x1 = α, x2 = δ and x3 = 
γ. Hence by [[2] proposiƟon 1.5.11 ] , (α,β) ∈ D∗ (ODCIn) and so K(ODCIn) ⊆ D∗ (ODCIn). (16) 

Now, from equaƟons 13 and 16, we have 

K(ODCIn) = D∗ (ODCIn) . 
As in [14], we deduce that 

Corollary 1. Let α,β ∈ ODCIn, Then (α,β) ∈ D∗ (ODCIn) if and only if | im(α) | = | im(β) |. 

Let L∗ (R∗)-class containing the element a be denoted by . We define a leŌ (right)∗-
ideal of a semigroup S to be leŌ (right)-ideal I of S for which  for all elements a 
of I. A subset I of S is a ∗-ideal if it is both a leŌ ∗-ideal and a right ∗-ideal. The principal ∗-ideal J∗ (a) 
generated by the element a of S is the intersecƟon of all ∗-ideals of S to which a belongs. The 
relaƟon J ∗ is defined by the rule that: (a,b) ∈ J ∗ if and only if J∗ (a) = J∗ (b). 
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we now have the following lemma 

Lemma 14. [[21],Lemma 1.2.2] If a, b are elements of a semigroup S, then b ∈ J∗ (a) if and only if 
there are elements a0, a1, . . . , an ∈ S, x1, x2, . . . , xn, y1, y2, . . . , yn S1 such that a = a0, b = bn and 
(ai,xiai−1yi) ∈ D∗ for i = 1, . . .,n. 

we now have the following lemma which is analogue of lemma 3.6 in [14] 

Lemma 15. For each α, β ∈ ODCIn, α ∈ J ∗β implies | im(α) | ≤ | im(β) |. 

 proof. Let α ∈ J ∗β, then by lemma 14 there exist β0, . . .,βn ∈ ODCIn, 

such that β = β0, α = βn and (βi,δiβi−1γi) ∈ D∗ (ODCIn), for i = 
1, . . .,n. However, by corollary 1, this implies that | im(βi) | = | im(βiβi−1γi) | ≤ | im(βi−1) | for all i = 
1, . . .,n, which implies | im(α) | = | im(β) | as required. 

Next we consider some definiƟons which are important in the following results (see [26, 27, 
21] ). 

A semigroup S in which each L∗-class and each R∗-class contains an idempotent is called 
abundant. An abundant semigroup in which the set of all idempotents E(S) is a semilaƫce is 
called adequate. For an element a of an adequate semigroup S, the (unique) idempotent in the 
L∗-class containing a will be denoted by a∗ similarly, the (unique) idempotent in the R∗-class 
containing a will be denoted by a+. An adequate semigroup S is said to typeA if ea = a(ea)∗ and ae 
= a(ae)+ for all elements a in S and all idempotents e in S. A subsemigroup U containing all the 
idempotents of a semigroup S is called full subsemigroup. 

Corollary 2. [[14],lemma 3.8] The semigroup ODCIn is ample 

Proof. For each α ∈ ODCIn then by definiƟon α∗ = 1im(α) and α+ = 1dom(α). Let ϵ be an arbiƟrary 

idempotent in ODCIn. Then obviously ,  and 

. Also 

 ϵα = α · 1im(ϵα) = α(ϵα)∗ and αϵ = α · 1dom(αϵ) = (αϵ)+ α. 
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