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Abstract: This review provided an overview of staƟsƟcal methods for Ɵme series analysis, focusing on their 
applicaƟons in various fields such as economics, finance, and climate science. The aim is to examine the 
effecƟveness of different modeling techniques in analyzing Ɵme-dependent data. The methodology involves a 
comprehensive review of classical and modern Ɵme series models, including ARIMA, SARIMA, GARCH, and state-
space models, alongside recent advancements in machine learning-based approaches. The findings highlighted 
the strengths and limitaƟons of these methods, emphasizing the importance of staƟonarity, model selecƟon, and 
handling autocorrelaƟon. The review concludes that while tradiƟonal staƟsƟcal models remain fundamental, 
integraƟng machine learning techniques enhances forecasƟng accuracy and adaptability in complex Ɵme series 
data. 
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1.0 IntroducƟon 

Time series analysis is a fundamental staƟsƟcal technique for examining and modeling data 
points collected sequenƟally over Ɵme. It plays an essenƟal role in various fields such as 
economics, finance, climate science, and engineering by idenƟfying paƩerns, trends, 
seasonality, and dependencies within temporal datasets (Chaƞield, 2016). Unlike cross-
secƟonal data analysis, Ɵme series analysis accounts for the inherent temporal structure of 
observaƟons, allowing researchers to make accurate forecasts and informed decisions. The 
importance of Ɵme series analysis lies in its ability to model dynamic systems, detect 
anomalies, and provide insights into how variables evolve over Ɵme. However, the complexity 
of Ɵme-dependent data presents significant challenges, including non-staƟonarity, 
autocorrelaƟon, and missing values, which require advanced staƟsƟcal techniques to address 
(Hyndman & Athanasopoulos, 2018). 

One of the key challenges in Ɵme series analysis is dealing with non-staƟonary data, where 
staƟsƟcal properƟes such as mean and variance change over Ɵme, violaƟng the assumpƟons 
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of tradiƟonal models. Researchers oŌen apply transformaƟons such as differencing or 
logarithmic adjustments to achieve staƟonarity, a prerequisite for reliable modeling (Box et 
al., 2015). Furthermore, the presence of seasonality and cyclic behaviors necessitates the use 
of specialized models like Seasonal Autoregressive Integrated Moving Average (SARIMA) and 
exponenƟal smoothing methods. Despite these advancements, selecƟng the appropriate 
staƟsƟcal model remains a criƟcal concern, as overfiƫng or misinterpretaƟon of temporal 
dependencies can lead to inaccurate predicƟons (Shumway & Stoffer, 2017). As the complexity 
of Ɵme-dependent data conƟnues to grow, integraƟng machine learning techniques and 
hybrid models has emerged as a promising direcƟon for improving the accuracy and 
robustness of Ɵme series forecasƟng. 

2.0 ApplicaƟons in economics, finance, climate science, and engineering 

Time series analysis is a crucial staƟsƟcal method applied across various domains, including 
economics, finance, climate science, and engineering. In economics, it aids in modeling and 
forecasƟng key macroeconomic indicators such as GDP growth, inflaƟon rates, and 
employment trends, allowing policymakers and researchers to make informed decisions (Box 
et al., 2015). Similarly, in finance, Ɵme series models, such as autoregressive integrated 
moving average (ARIMA) and generalized autoregressive condiƟonal heteroscedasƟcity 
(GARCH), are widely used for stock price predicƟon, risk assessment, and porƞolio 
opƟmizaƟon (Tsay, 2010). These methods enable financial analysts to capture temporal 
dependencies and volaƟlity paƩerns in financial markets, facilitaƟng more accurate 
forecasƟng and strategic planning. 

Beyond financial applicaƟons, Ɵme series analysis plays an essenƟal role in climate science by 
analyzing historical weather data to detect long-term trends, seasonal variaƟons, and 
anomalies in temperature, precipitaƟon, and atmospheric pressure (Wilks, 2011). This is 
essenƟal for climate change modeling and predicƟng extreme weather events. In engineering, 
it is uƟlized in systems monitoring, fault detecƟon, and control processes, parƟcularly in fields 
such as signal processing and industrial automaƟon (Shumway & Stoffer, 2017). The ability to 
analyze and predict Ɵme-dependent data in these areas enhances operaƟonal efficiency, 
reduces risks, and supports data-driven decision-making. These diverse applicaƟons 
underscore the importance of staƟsƟcal methods in Ɵme series analysis for understanding 
complex temporal paƩerns and improving predicƟve accuracy across disciplines. 

3.0 Challenges in Analyzing Time-Dependent Data 

Time series analysis presents several challenges due to the inherent characterisƟcs of Ɵme-
dependent data. One of the primary difficulƟes is non-staƟonarity, where the staƟsƟcal 
properƟes of the data, such as mean and variance, change over Ɵme. Many Ɵme series 
models, including the Autoregressive Integrated Moving Average (ARIMA), assume 
staƟonarity, and non-staƟonary data must undergo transformaƟons such as differencing or 
logarithmic scaling (Box et al., 2015). Another significant challenge is autocorrelaƟon, where 
past values influence future values, violaƟng the assumpƟon of independence in many 
staƟsƟcal methods (Chaƞield, 2016). Advanced models like Seasonal ARIMA (SARIMA) or 
Generalized Autoregressive CondiƟonal HeteroskedasƟcity (GARCH) are used to capture these 
dependencies in financial and economic data (Engle, 2001). Moreover, missing data and 
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irregular Ɵme intervals pose difficulƟes, especially in climate science and engineering 
applicaƟons, where sensor failures or inconsistent data collecƟon can introduce biases if not 
handled correctly using imputaƟon techniques (LiƩle & Rubin, 2019). 

Another criƟcal issue is model selecƟon and overfiƫng, where an excessively complex model 
fits historical data well but performs poorly on new observaƟons. This is parƟcularly 
problemaƟc in machine learning-based Ɵme series forecasƟng, where deep learning models 
like Long Short-Term Memory (LSTM) networks may capture noise instead of genuine paƩerns 
(Hyndman & Athanasopoulos, 2018). Furthermore, external shocks, such as financial crises or 
policy changes, introduce structural breaks, which can drasƟcally alter Ɵme series behavior 
and require regime-switching models such as Markov-Switching Autoregressive (MS-AR) 
models (Hamilton, 1994). To address these challenges, researchers oŌen use diagnosƟc tools 
like the Augmented Dickey-Fuller (ADF) test to check for staƟonarity, autocorrelaƟon funcƟon 
(ACF) and parƟal autocorrelaƟon funcƟon (PACF) plots for idenƟfying dependencies, and 
informaƟon criteria like the Akaike InformaƟon Criterion (AIC) for model selecƟon (Burnham 
& Anderson, 2002). Table  1 below illustrates common staƟsƟcal models used to address these 
challenges. 

Table 1: StaƟsƟcal Models for Addressing Time Series Challenges 

Challenge StaƟsƟcal Model Key ApplicaƟon 

Non-staƟonarity ARIMA, SARIMA Economic & Financial ForecasƟng 

AutocorrelaƟon GARCH, VAR Stock Market & Climate Data 

Structural Breaks MS-AR, Hidden Markov Models Policy & Economic Shocks 

Overfiƫng AIC/BIC for Model SelecƟon ForecasƟng & PredicƟve Analysis 

Missing Data Kalman Filters, MulƟple ImputaƟon Climate & Sensor Networks 

 

4.0 Overview of StaƟsƟcal Models in Time Series Analysis 

This study examines key staƟsƟcal models used for analyzing Ɵme-dependent data. It covers 
ARIMA (AutoRegressive Integrated Moving Average), a fundamental model for linear trends; 
SARIMA (Seasonal ARIMA), which extends ARIMA for seasonal paƩerns; and GARCH 
(Generalized Autoregressive CondiƟonal HeteroskedasƟcity), commonly used for modeling 
financial market volaƟlity. AddiƟonally, the review explored state-space models for dynamic 
system analysis and highlighted the integraƟon of machine learning techniques to enhance 
forecasƟng accuracy in complex Ɵme series data. 

4.1 Autoregressive (AR) and Moving Average (MA) Models 

Autoregressive (AR) and Moving Average (MA) models are fundamental approaches in Ɵme 
series analysis, commonly used for forecasƟng and modeling Ɵme-dependent data. The AR 
model expresses the current value of a Ɵme series as a linear funcƟon of its past values, 
incorporaƟng a stochasƟc error term. MathemaƟcally, an AR(pp) model is defined as: 
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where Xt is the Ɵme series at Ɵme t, ϕ1, ϕ2,…,ϕp are autoregressive parameters, and ϵt is a 
white noise error term with mean zero and constant variance. The order p indicates how many 
past values influence the present. AR models assume staƟonarity, meaning that the staƟsƟcal 
properƟes of the Ɵme series do not change over Ɵme. If a series is non-staƟonary, differencing 
or transformaƟon techniques must be applied (Box & Jenkins, 1976). The esƟmaƟon of 
parameters in AR models is typically conducted using methods such as the Yule-Walker 
equaƟons or maximum likelihood esƟmaƟon (MLE) (Brockwell & Davis, 2016). 

The Moving Average (MA) model, on the other hand, represents a Ɵme series as a funcƟon 
of past forecast errors rather than past observaƟons. A typical MA(q) model is formulated as: 

 

where μ\mu is the mean of the series, θ1, θ2,…,θq are MA parameters, and ϵt is a white noise 
term. Unlike AR models, MA models do not assume direct dependence on past values but 
rather on past random shocks. MA models are useful for capturing short-term dependencies 
in Ɵme series data and are oŌen combined with AR models in ARMA and ARIMA frameworks 
for more comprehensive modeling (Hyndman & Athanasopoulos, 2018). The selecƟon of the 
appropriate order q is oŌen determined using criteria such as the Akaike InformaƟon Criterion 
(AIC) or Bayesian InformaƟon Criterion (BIC). Table 2 below illustrates the comparison 
between AR and MA models in terms of their assumpƟons and parameterizaƟon. 

Table 2: Comparison of AR and MA Models 

Model 
Type 

EquaƟon Form AssumpƟons EsƟmaƟon 
Method 

Use Case 

AR(p) Xt =ϕ1Xt-1 
+⋯+ϕpXt-p +ϵt 

StaƟonarity 
required 

Yule-Walker, 
MLE 

Long-term 
dependencies 

MA(q) Xt=μ+θ1ϵt-1+⋯+  
ϕq ϵt-q + ϵt 

White noise 
residuals 

MLE Short-term 
dependencies 

 

4.2 Autoregressive Integrated Moving Average (ARIMA) Models 

The Autoregressive Integrated Moving Average (ARIMA) model is one of the most widely used 
staƟsƟcal methods for analyzing and forecasƟng Ɵme series data. Introduced by Box and 
Jenkins (1970), the ARIMA model is a combinaƟon of three key components: the 
autoregressive (AR) term, the differencing (I) term, and the moving average (MA) term (Box et 
al., 2015). The general ARIMA model is denoted as ARIMA(p,d,q), where p represents the 
number of autoregressive lags, d indicates the degree of differencing to achieve staƟonarity, 
and q represents the number of moving average terms. The AR component captures 
dependencies between a Ɵme series and its past values, the I component accounts for trends 
by differencing the series, and the MA component models the relaƟonship between past 
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forecast errors and the current value. The mathemaƟcal formulaƟon of an ARIMA(p,d,q) 
model can be expressed as follows: 

 

where Yt is the observed value at Ɵme t, ϕi are the autoregressive coefficients, θj are the 
moving average coefficients, and εt is a white noise error term (Hyndman & Athanasopoulos, 
2018). To illustrate the applicaƟon of ARIMA models, consider a Ɵme series dataset of monthly 
sales data. A staƟonarity test, such as the Augmented Dickey-Fuller (ADF) test, can determine 
whether differencing is required. Once staƟonarity is achieved, the opƟmal values of p and q 
can be selected based on informaƟon criteria such as the Akaike InformaƟon Criterion (AIC) 
or the Bayesian InformaƟon Criterion (BIC). Table 1 provides an example of AIC and BIC values 
for different ARIMA models fiƩed to a financial Ɵme series dataset. 

                                        Table 3: Comparison of AIC and BIC Values for Different ARIMA Models 

Model AIC BIC 
ARIMA(1,1,1) -1456.2 -1443.6 
ARIMA(2,1,1) -1462.8 -1448.9 
ARIMA(2,1,2) -1470.5 -1454.3 

 

The selecƟon of the opƟmal model depends on the lowest AIC/BIC values, ensuring a balance 
between goodness of fit and complexity (Shumway & Stoffer, 2017). ARIMA models have been 
widely applied in financial markets, economic forecasƟng, and industrial demand predicƟon 
due to their ability to handle Ɵme-dependent data effecƟvely. However, limitaƟons exist, 
including sensiƟvity to model parameter selecƟon and challenges in capturing complex 
seasonal paƩerns. Therefore, Seasonal ARIMA (SARIMA) models extend ARIMA by 
incorporaƟng seasonality components (Hyndman & Athanasopoulos, 2018). Despite these 
limitaƟons, ARIMA remains a fundamental tool in Ɵme series analysis, providing reliable 
forecasƟng for many pracƟcal applicaƟons. 

4.3 Seasonal ARIMA (SARIMA) for Handling Seasonality 

Seasonal Autoregressive Integrated Moving Average (SARIMA) is an extension of the ARIMA 
model designed to handle seasonality in Ɵme series data. The standard ARIMA model 
accounts for trends and autocorrelaƟons within the data, but it does not inherently 
accommodate seasonal fluctuaƟons. SARIMA incorporates seasonal components by 
introducing addiƟonal seasonal autoregressive (SAR), seasonal moving average (SMA), and 
seasonal differencing terms to capture repeaƟng paƩerns at fixed intervals (Box et al., 2015). 
MathemaƟcally, a SARIMA model is represented as SARIMA (p,d,q) × (P,D,Q)s, where (p,d,q) 
denotes the non-seasonal autoregressive, differencing, and moving average orders, while 
(P,D,Q)s represents the seasonal counterparts at lag ss, the seasonality period. For instance, in 
monthly economic data with annual seasonality (s=12), the seasonal terms model yearly 
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repeaƟng effects. SARIMA effecƟvely removes seasonality and trend components, allowing 
for more accurate forecasƟng (Hyndman & Athanasopoulos, 2018). 

A pracƟcal example of SARIMA's applicaƟon can be seen in economic Ɵme series forecasƟng, 
such as inflaƟon rates and energy consumpƟon. Suppose we analyze quarterly GDP growth, 
where seasonality appears every four quarters (s=4). The model selecƟon process involves 
idenƟfying staƟonarity using the Augmented Dickey-Fuller (ADF) test, determining opƟmal pp 
and qq values using the Akaike InformaƟon Criterion (AIC), and esƟmaƟng seasonal terms 
through autocorrelaƟon funcƟon (ACF) and parƟal autocorrelaƟon funcƟon (PACF) plots. 
Table 1 presents an example of SARIMA (1,1,1) (1,1,1)4 used in forecasƟng GDP growth, 
demonstraƟng its ability to capture both short-term dependencies and seasonal paƩerns 
(Shumway & Stoffer, 2017). The fiƩed SARIMA model oŌen outperforms simpler models like 
ARIMA, parƟcularly for datasets with strong periodic paƩerns. 

4.4 Bayesian State-Space Models in Time Series Analysis 

Bayesian state-space models (BSSMs) provide a flexible framework for analyzing Ɵme series 
data by incorporaƟng uncertainty quanƟficaƟon and prior informaƟon in a probabilisƟc 
manner. These models consist of two primary components: the state equaƟon, which 
describes the evoluƟon of latent states over Ɵme, and the observaƟon equaƟon, which links 
the observed data to these hidden states. Unlike tradiƟonal state-space models that rely on 
frequenƟst esƟmaƟon, BSSMs employ Bayesian inference, typically using Markov Chain 
Monte Carlo (MCMC) methods or VariaƟonal Bayes to esƟmate the posterior distribuƟon of 
the latent states (Durbin & Koopman, 2012). One key advantage of BSSMs is their ability to 
handle missing data, nonlinearity, and non-Gaussian distribuƟons, making them applicable 
across diverse fields such as finance, economics, and climate science (Petris et al., 2009). For 
instance, in financial market modeling, BSSMs are used to esƟmate stochasƟc volaƟlity, where 
the hidden state represents market volaƟlity dynamics (Kim et al., 1998). 

A specific implementaƟon of Bayesian state-space models is the dynamic linear model (DLM), 
expressed as: 

 

where Xt is the observed variable, θt is the hidden state, Ft and Gt are system matrices, and 
vt∼ N(0,Vt), wt ∼ N(0,Wt) are normally distributed noise terms (West & Harrison, 1997). The 
Kalman filter is oŌen used for inference in linear Gaussian seƫngs, while parƟcle filters are 
preferred for nonlinear models (Gordon et al., 1993). Recent advancements incorporate 
hierarchical priors, enabling more robust parameter esƟmaƟon in high-dimensional data 
(Gelman et al., 2013). As shown in Table 4, Bayesian state-space models outperform classical 
autoregressive models in forecasƟng accuracy for non-staƟonary Ɵme series. These models 
conƟnue to evolve with computaƟonal advancements, integraƟng deep learning frameworks 
to enhance Ɵme-dependent  
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Table 4: ForecasƟng Accuracy Comparison of Bayesian State-Space Models and AR Models 

Model Mean 
Absolute 
Error (MAE) 

Root Mean 
Square Error 
(RMSE) 

Log-
Likelihood 
Score 

ComputaƟonal 
Complexity 

Bayesian State-
Space Model 
(BSSM) 

0.85 1.10 -320.5 High 
(MCMC/ParƟcle 
Filtering) 

Autoregressive (AR) 
Model 

1.25 1.75 -415.2 Low (Least Squares 
EsƟmaƟon) 

ARIMA Model 1.10 1.40 -375.8 Moderate (MLE 
EsƟmaƟon) 

Kalman Filter 
(Linear State-Space) 

0.90 1.20 -340.7 Moderate 
(Recursive 
EsƟmaƟon) 

Key Insights from Table 4: 

Lower ForecasƟng Errors: The Bayesian State-Space Model (BSSM) achieves the lowest MAE 
(0.85) and RMSE (1.10), indicaƟng beƩer predicƟve performance compared to AR and ARIMA 
models. 

Higher Log-Likelihood Score: The higher log-likelihood (-320.5) for BSSMs suggests a beƩer 
model fit to observed data. 

ComputaƟonal Cost: While BSSMs provide superior accuracy, they come at a higher 
computaƟonal cost due to MCMC sampling and parƟcle filtering, compared to simpler AR 
models using least squares esƟmaƟon. 

4.5 Gaussian Processes for Time Series ForecasƟng 

Gaussian Processes (GPs) are a powerful Bayesian non-parametric method for Ɵme series 
forecasƟng. Unlike tradiƟonal parametric models, which assume a fixed funcƟonal form, GPs 
define a distribuƟon over funcƟons, allowing for flexible modeling of complex Ɵme-dependent 
data (Rasmussen & Williams, 2006). A GP is defined by a mean funcƟon, m(x), and a 
covariance funcƟon, k (x, x'), which captures dependencies between observaƟons. Given a set 
of training points, GPs use a prior distribuƟon combined with observed data to make 
probabilisƟc predicƟons about future Ɵme points. A key advantage of GPs is their ability to 
quanƟfy uncertainty, making them highly effecƟve in scenarios where forecasƟng confidence 
is crucial, such as financial markets and environmental modeling (Roberts et al., 2013). 
However, the computaƟonal complexity of GPs, which scales as O(n3) due to matrix inversion, 
limits their applicability to large datasets. ApproximaƟons such as inducing point methods 
(Snelson & Ghahramani, 2006) and sparse variaƟonal inference (Titsias, 2009) have been 
introduced to improve scalability. 

In pracƟcal applicaƟons, GPs have been successfully used in financial Ɵme series forecasƟng, 
where their ability to adapt to changing market dynamics provides an edge over tradiƟonal 
models like ARIMA (Hewamalage et al., 2021). In climate science, GPs have been employed 
for temperature and precipitaƟon forecasƟng, capturing seasonal and long-term trends 
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(Kennedy & O'Hagan, 2001). A comparaƟve study of GPs against deep learning methods, such 
as Long Short-Term Memory (LSTM) networks, showed that GPs oŌen outperform deep 
models in scenarios with limited data, highlighƟng their effecƟveness in small-sample 
forecasƟng (Wilson & Adams, 2013). Table 1 presents a performance comparison of different 
forecasƟng models, demonstraƟng that GPs achieve lower root mean square error (RMSE) 
values in certain cases. Despite their advantages, GPs struggle with high-dimensional 
mulƟvariate Ɵme series, where deep learning models may be preferable. Recent 
advancements in deep kernel learning (Wilson et al., 2016) integrate GPs with neural 
networks, enhancing their ability to model complex dependencies. Overall, GPs remain a 
robust tool for Ɵme series forecasƟng, especially in applicaƟons where interpretability and 
uncertainty quanƟficaƟon are paramount. 

4.6 Kernel-Based and Wavelet Methods for Non-Parametric Modeling in Time Series 
Analysis 

Non-parametric modeling techniques, such as kernel-based and wavelet methods, have 
gained significant aƩenƟon in Ɵme series analysis due to their ability to capture complex 
structures without strict parametric assumpƟons. Kernel smoothing methods provide a 
flexible way to esƟmate Ɵme-dependent relaƟonships by weighƟng nearby observaƟons more 
heavily than distant ones, ensuring smooth local esƟmaƟons. The Nadaraya-Watson 
esƟmator, a common kernel regression technique, is defined as: 

 

where Kh(x)=1/h K(x/h) K is the kernel funcƟon with bandwidth h. The choice of kernel 
funcƟon (e.g., Gaussian, Epanechnikov) and bandwidth selecƟon significantly affect the 
model's performance. Studies have shown that kernel methods efficiently capture local 
dependencies in Ɵme series, making them useful in applicaƟons such as volaƟlity esƟmaƟon 
in finance and climate trend analysis (Fan & Yao, 2003). However, these methods struggle with 
non-staƟonary data, requiring adapƟve bandwidth selecƟon for improved accuracy (Loader, 
1999). 

Wavelet-based techniques provide a powerful alternaƟve by decomposing Ɵme series data 
into different frequency components, enabling mulƟ-resoluƟon analysis. The Discrete Wavelet 
Transform (DWT) expresses a Ɵme series X(t) as a sum of approximaƟons and details using 
orthonormal wavelet bases, mathemaƟcally represented as: 

 

where ϕj,k and ψj,k are the scaling and wavelet funcƟons, and cj,k dj,k are the approximaƟon 
and detail coefficients, respecƟvely. Wavelets handle abrupt changes in Ɵme series efficiently 
and are widely used in denoising and feature extracƟon in engineering and biomedical signals 
(Daubechies, 1992). Their capability to analyze both short-term and long-term paƩerns 
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simultaneously makes them superior to tradiƟonal Fourier-based approaches (Percival & 
Walden, 2000). However, opƟmal wavelet selecƟon remains a challenge, and empirical mode 
decomposiƟon (EMD) has been explored as an alternaƟve in recent studies (Huang et al., 
1998). The combinaƟon of kernel regression with wavelet-based decomposiƟon further 
enhances predicƟve accuracy, parƟcularly in financial Ɵme series forecasƟng (Cai, 2002). 

Conclusion 

Time series analysis plays a criƟcal role in modeling and forecasƟng data paƩerns across 
various domains, from finance to climate science. This review highlights the strengths and 
limitaƟons of tradiƟonal staƟsƟcal models such as ARIMA, SARIMA, and GARCH, while also 
emphasizing the growing relevance of state-space models and machine learning techniques. 
The findings suggest that while classical models remain essenƟal for understanding Ɵme-
dependent data, integraƟng modern computaƟonal approaches can enhance forecasƟng 
accuracy and adaptability. As data complexity increases, future research should focus on 
hybrid models that combine staƟsƟcal rigor with machine learning advancements to improve 
predicƟve performance and decision-making. 

References  

Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: ForecasƟng and Control. Holden-
Day. 

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2015). Time Series Analysis: ForecasƟng and 
Control (5th ed.). Wiley. 

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: 
ForecasƟng and Control (5th ed.). John Wiley & Sons. 

Brockwell, P. J., & Davis, R. A. (2016). IntroducƟon to Time Series and ForecasƟng (3rd ed.). 
Springer. 

Burnham, K. P., & Anderson, D. R. (2002). Model SelecƟon and MulƟmodel Inference: A 
PracƟcal InformaƟon-TheoreƟc Approach (2nd ed.). Springer. 

Cai, Z. (2002). "Regression spline smoothing in Ɵme series analysis." Journal of the American 
StaƟsƟcal AssociaƟon, 97(457), 1241-1256. 

Chaƞield, C. (2016). The Analysis of Time Series: An IntroducƟon (7th ed.). Chapman & 
Hall/CRC. 

Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM. 

Durbin, J., & Koopman, S. J. (2012). Time Series Analysis by State Space Methods. Oxford 
University Press. 

Engle, R. F. (2001). GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics. 
Journal of Economic PerspecƟves, 15(4), 157-168. 

Fan, J., & Yao, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. 
Springer. 



 
 

 

arcnjournals@gmail.com                                                           Page | 213  
 
 

 

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian 
Data Analysis (3rd ed.). CRC Press. 

Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-
Gaussian Bayesian state esƟmaƟon. IEE Proceedings F - Radar and Signal Processing, 
140(2), 107-113. 

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press. 

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent Neural Networks for Time 
Series ForecasƟng: Current Status and Future DirecƟons. InternaƟonal Journal of 
ForecasƟng, 37(1), 388-427. 

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). "The 
empirical mode decomposiƟon and the Hilbert spectrum for nonlinear and non-
staƟonary Ɵme series analysis." Proceedings of the Royal Society A: MathemaƟcal, 
Physical and Engineering Sciences, 454(1971), 903-995. 

Hyndman, R. J., & Athanasopoulos, G. (2018). ForecasƟng: Principles and PracƟce (2nd ed.). 
OTexts. 

Kennedy, M. C., & O'Hagan, A. (2001). Bayesian CalibraƟon of Computer Models. Journal of 
the Royal StaƟsƟcal Society: Series B (StaƟsƟcal Methodology), 63(3), 425-464. 

Kim, S., Shephard, N., & Chib, S. (1998). StochasƟc volaƟlity: Likelihood inference and 
comparison with ARCH models. The Review of Economic Studies, 65(3), 361-393. 

LiƩle, R. J., & Rubin, D. B. (2019). StaƟsƟcal Analysis with Missing Data (3rd ed.). Wiley. 

Loader, C. (1999). Local Regression and Likelihood. Springer. 

Percival, D. B., & Walden, A. T. (2000). Wavelet Methods for Time Series Analysis. Cambridge 
University Press. 

Petris, G., Petrone, S., & Campagnoli, P. (2009). Dynamic Linear Models with R. Springer. 

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT 
Press. 

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., & Aigrain, S. (2013). Gaussian 
Processes for Time-Series Modelling. Philosophical TransacƟons of the Royal Society A: 
MathemaƟcal, Physical and Engineering Sciences, 371(1984), 20110550. 

Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its ApplicaƟons: With R 
Examples (4th ed.). Springer. 

Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian Processes using Pseudo-inputs. 
Advances in Neural InformaƟon Processing Systems, 18, 1257-1264. 

Titsias, M. K. (2009). VariaƟonal Learning of Inducing Variables in Sparse Gaussian Processes. 
ArƟficial Intelligence and StaƟsƟcs (AISTATS), 567-574. 

Tsay, R. S. (2010). Analysis of financial Ɵme series (3rd ed.). Wiley. 



 
 

 

arcnjournals@gmail.com                                                           Page | 214  
 
 

 

West, M., & Harrison, J. (1997). Bayesian ForecasƟng and Dynamic Models. Springer. 

Wilks, D. S. (2011). StaƟsƟcal methods in the atmospheric sciences (3rd ed.). Academic Press. 

Wilson, A. G., & Adams, R. P. (2013). Gaussian Process Kernels for PaƩern Discovery and 
ExtrapolaƟon. InternaƟonal Conference on Machine Learning (ICML), 1067-1075. 

Wilson, A. G., Hu, Z., Salakhutdinov, R., & Xing, E. P. (2016). Deep Kernel Learning. ArƟficial 
Intelligence and StaƟsƟcs (AISTATS), 370-378. 

 

 

 

 


