Network for Research and Development in Africa
International Journal of Pure and Applied Science Research
ISSN: 2384-5918. Volume 12, Number 6
Pages 19-32 (April, 2023)
DOI: 67321673211264
https://arcnjournals.org

Geometry Performance Test (GPT)

Aminu ISAH PhD
Department of Science Education, Shehu Shagari University of Education, Sokoto |
socialmaan7@gmail.com, 08065965956

Abstract

The researcher developed Geometry Performance Test (GPT) GPT through the validations of senior lecturers in science education Ahmadu Bello University Zaria, Shehu Shagari College of Education and Mathematics Teachers in Sokoto State. The aim is to assist researchers with instrument for data collection strictly JSS 3, since researches of mathematics education show that students are failing mathematics particularly in secondary schools which is termed as the foundation for the future study or academic. GPT is a 60 items multiple choice objective test with four options A, B, C, or D, each item carries 1 mark. The contents of the GPT consist of all Geometry content of Junior Secondary School (JSS) three. Current Mathematics curriculum of Nigeria Educational Research Development Council (NERDC) 2013 was strictly used. Different mathematics test books and Basic Education Certificate Examination (BECE) pass question papers were used to form GPT. Reliability was carried out with two schools in Sokoto Metropolis using test retest method, and cronbach alpha was used to analyse the data. 0.63 was obtained as the reliability value, which shows that the instrument is valid and reliable, and can be used to conduct experimental study particularly at JSS 3 level. In the African countries like Ghana, and many more.

Keywords: Geometry, Performance Test.

Introduction

I, Dr. ISAH (Mathematics Education) was born in Gidan Aduwa Maberalddi, Sokoto State. I started my Primary school in the year 1989-1995 at Model Primary School Sokoto, and then proceeded to Sheik Abubakar Gumi Memorial College Sokoto in the year 2001. In the year 2001-2004 I obtained Nigeria Certificate in Education in Mathematics and Computer Science at Shehu Shagari College of Education Sokoto in the year 2004. I also obtained degree in Science Education Mathematics at Usmanu Danfodio University Sokoto in the year 2007. I then proceeded to Ahmadu Bello University Zaria for Masters and PhD in Science Education Mathematics in the year 2010-2015 and 2016-2021 respectively.

I started teaching at Mabera Magaji Model Primary School Sokoto in the year 2001; I taught Mathematics at Tafida Aminu model primary school Mabera and Nana Girls Secondary

School Sokoto in the year 2003 and 2005. I also taught Computer Studies at Sultan Muhammad Macido Institute for Quran and General Studies Sokoto in the year 2005-2012. I became a full time lecturer at Shehu Shagari College of Education Sokoto in the 2012-date as assistant lecturer handling Basic General Mathematics 1,2,3,4,5 and history of Mathematics respectively. Having under gone these stages; I experienced problems in teaching and learning particularly in Mathematics Education. Thus, I was encouraged to develop Instrument for teaching and learning Mathematics called Geometry Performance Test (GPT).

Geometry Performance Test GPT is a 60 multiple choice objective test with four options (A,B,C and D), each to determine the academic performanceand retention of students in Geometry of JSS III students. The content and face validity of the GPT was validated by subject experts from Science Education and psychology departments of Ahmadu Bello University Zaria, Mathematics and Psychology departments of Shehu Shagari College of Education and some secondary schools in Sokoto state. The experts include Professors and Senior Lecturers. The GPT was pilot tested using two schools in Sokoto State to ascertain the reliability of the instrument using Pearson's Product Moment Coefficient (PPMC) formulaand 0.63 was obtained as the reliability of GPT, which shows that the instrument is reliable and can be used for data collection in the study.

The contents used in the class instruction were developed based on the revised NERDC 2013 mathematics syllabus. The GPT with the marking scheme were validated by Senior lecturers from Science Education Ahmadu Bello University Zaria; and Shehu Shagari College of Education Sokoto and Mathematics Teachers from Sokoto State.

GPT was structured according to cognitive bloom taxonomy based on knowledge, comprehension and applications only; the reason for restricting to only three out of the six cognitive bloom taxonomy was for the level of the students and the convenience of the researcher. Table 1 showed specification of GPT

What the test measure:

1. Academic performance of students
2. Retention ability among learners
3. Gender differences etc

Steps to Use GPT

The GPT is use to test the performance or retention of JSS 3 students as follows:

1. Administer GPT before the treatment which is called pre-test o_{1}
2. Give the treatment for six weeks X_{1}, then re-administer GPT again; which is called Posttest O_{2}, to measure performance of students
3. After two weeks of treatment, the teacher re-administers GPT which we call Post-Posttest to test the retention level of the students.

Topics with distribution of questions based on domain of knowledge, considered during the formulation of GPT:

Table of Specification of (GPT) Based on Cognitive Bloom Taxonomy of Education

S/N	Topics (contents)	K	C	A	Total
1.	Similar Shapes	1	3	4	8
2.	Enlargements and Scale Factor	1	0	4	5
2.	Length, Area, and Volume of Similar Shapes	0	0	2	2
3.	The Sine, Cosine, and Tangent of an Acute Angle	1	2	0	3
4.	Application of Trigonometric Ratios	2	0	10	12
5.	Area of Triangles	1	1	1	3
6.	Area of Parallelogram	1	2	1	4
7.	Area of Trapezium	0	1	0	1
8.	Area of Circles	1	0	1	2
9.	Word Problems Involving Area	1	0	4	5
10	Construction of Angle 45	2	3	0	5
11	Construction of Angle 30°	2	1	0	3
12	Copying Given Angles	0	0	0	0
13	Construction of Simple Plane Shapes	2	3	2	7
$\begin{aligned} & \text { To } \\ & \text { tal } \end{aligned}$		15	16	29	60

Key:

K= Knowledge

C= Comprehension
A=Application
T= Total. See appendix C for the details of the GPT

Geometry Performance Test (GPT)

School:
Gender: Male [] Female [] Time Allowed: 1:30 Min
Location: Rural [] Urban [] School Type: Day[] Boarding []
INSTRUCTIONS: Select from the options a-d what you believe to be the correct answer of each question. You are to answer all the questions and all questions carry equal marks.

1. Ruler is used in construction to measure the ------- of a line before going into other activities.
(a) Protractor
(b) Compasses
(c) Divider
(d) Length

Use figure 3.1 to answer question 2.

Figure 3.1
2. Angle $<B A C$ is?
(a) 30°
(b) 45^{0}
(c) 90°
(d) 60°

Use figure 3.2 to answer question 3

Figure 3.2
3. $\quad|A C|$ and $|B C|$ are equal to: \qquad
(a) 3.5 cm and 4.5 cm
(b) 5 cm and 7 cm
(c) 5 cm and 8 cm
(d) 7 cm and 3 cm .

Use figure 3.3 to answer questions 4 and 5

Figure 3.3
4. Diagonal $|P R|$ is equal to: \qquad
(a) 7.2 cm
(b) 8 cm
(c) 9 cm
(d) 6.5 cm
5. Diagonal $|\mathrm{QS}|$ is equal to:
(a) 12 cm
(b) 7.5 cm
(c) 8 cm
(d) 8.5 cm

Use figure 3.4 to answer questions 6 and 7

Figure 3.4
6. Angle y^{0} in figure 3.4 is equal to \qquad
(a) 30° (b) 45°
(c) 90°
(d) 105°
7. Angle x^{0} in figure 3.4 is equal to \qquad
(a) 25° (b) 40°
(c) 15°
(d) 45°
8. One of the following is necessary in the geometrical construction
(a) A pair of compasses and ruler (b) Divider and ruler (c) Pencil and ruler (d) All of the above
9. One of the following is not necessary in geometrical construction
a. Sharp pencil
(b) Pair of compasses
(c) Fresh eraser
(d) Graph
10. The instrument for measuring angles is called \qquad .
(a) Compass
(b) Set square
(c) Protractor
(d) Ruler
11. Bisection of angle 60° will give
(a) 90°
(b) 180°
(c) 360°
(d) 30°
12. Bisection of angle 90° will give
(a) 45°
(b) 60°
c) 90°
(d) 30°

Figure 3.5
13. The figure 3.5 shows the construction of
(a) 30^{0}
(b) 45°
(c) 60°
(d) 90°

Figure 3.6
14. In figure 3.6, <ARS is
(a) 30°
(b) 45°
(c) 60°
(d) 90°

Figure 3.7
15. The figure 3.7 shows an angle of \qquad
(a) 30^{0}
(b) 90°
(c) 60° (d) 45°
16. Calculate the area of rhombus whose diagonals are 6 cm and 8 cm
(a) $42 \mathrm{~cm}^{2}$
(b) $24 \mathrm{~cm}^{2}$
(c) $86 \mathrm{~cm}^{2}$
(d) $48 \mathrm{~cm}^{2}$
17. The value of x in figure 3.8 is \qquad

(a) 38.2
(b) 14
(c) 82.3
(d) 13
18. The area of square in figure 3.9 is

(a) $2 \mathrm{~cm}^{2}$
(b) $4 \mathrm{~cm}^{2}$
(c) $5 \mathrm{~cm}^{2}$
(d) $6 \mathrm{~cm}^{2}$
19. The area of a circle is $154 \mathrm{~cm}^{2}$, calculate its radius
(a) 12.3 cm
(b) 10 cm
(c) 7 cm (d) 14 cm
20. The area of triangle is given by \qquad
(a) $\frac{1}{3} b h$
(b) $\frac{1}{2} b h$
(c) $\frac{1}{4} b h$
(d) $\frac{1}{5} b h$
21. The base and height of a triangle are 6 cm and 16 cm , calculate its area
(a) $48 \mathrm{~cm}^{2}$
(b) $38 \mathrm{~cm}^{2}$
(c) $58 \mathrm{~cm}^{2}$
(d) $84 \mathrm{~cm}^{2}$
22. \qquad theorem states that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
(a) Sine theorem
(b) Cosine theorem
(c) Tangent theorem
(d) Pythagoras theorem
23. If $\triangle \triangle A B C$ is similar to $\triangle P$, which side correspond to $A B$?
(a) $\underset{A}{Q R}$
(b) PR
(c) $P Q$
(d) $Q P$
24. If the area of trapezium is $52 \mathrm{~m}^{2}$, and its parallel sides are 7 m and 9 m respectively. Calculate the distance between the parallel sides.
(a) 5 m
(b) 10 m
(c) 6.5 m
(d) 7.2 m
25. The ratio of any two corresponding length in two similar geometrical figures is called \qquad
(a) Scale factor
(b) Enlargement scale
(c) Similar
(d) Different
26. The scale factor from the bigger rectangle to the small rectangle is \qquad

(a) $5: 5$
(b) $1: 3$
(c) $5: 3$
(d) $5: 1$
27. The angle whose tangent is $\frac{5}{9}$, the angle equal to
(a) 30°
(b) 29°
(c) 20°
(d) 40°
28. Rectangle $A B C D$ and $P Q R S$ are similar, $C D=3 \mathrm{~cm}$ and $R S=5 \mathrm{~cm}$. If $A D=12 \mathrm{~cm}$, calculate the length of PS.
(a) 30 cm
(b) 25 cm
(c) 20 cm
(d) 35 cm
29. Two or more geometrical figures are said to be \qquad if they have the same shape but different sizes.
(a) Equal
(b) Different
(c) Less than
(d) Similar
30. The scale factor of figure 3.10 is \qquad

Figure 3.10
(a) $2: 1$
(b) $3: 8$
(c) $8: 20$
(d) 6:3
31. The missing side of figure 3.11 is \qquad

Figure 3.11
(a) 5
(b) 4
(c) 3
(d) 7
32. The longest side of a right angle triangle is called \qquad
(a) Opposite
(b) Adjacent
(c) Hypotenuse
(d) Non of the above
33. A plane figure with four equal sides and four equal angles is called \qquad
(a) Square
(b) Rectangle
(c) Triangle
(d) Rhombus
34. The area of figure 3.12 is \qquad

(a) $12 \mathrm{~cm}^{2}$
(b) 20 cm
(c) $1220 \mathrm{~cm}^{2}$
(d) $120 \mathrm{~cm}^{2}$
35. The area of circle is given by \qquad
(a) πr^{3}
(b) $\mathrm{A} \pi \mathrm{r}^{2}$
(c) πr^{2}
(d) $2 \pi r^{2}$
36. In $\triangle A B C, \angle A B C=90^{\circ}, / A B /=5 \mathrm{~cm}, / B C /=3 \mathrm{~cm}$, calculate $/ A C /$
(a) 11 cm
(b) 5.8 cm
(c) 6 cm
(d) 4 cm
37. Another name for plane shapes are \qquad
(a) 4 dimensional shape
(b) 3 dimensional shape
(c) 2 dimensional shape
(d) kite
38. If $\sin y^{0}=\frac{3}{5}$, calculate tan y^{0},
(a) $\frac{3}{5}$
(b) $\frac{5}{3}$
(c) $\frac{5}{4}$
(d) $\frac{3}{4}$
39. Two shapes are similar if \qquad
(a) One is an enlargement of another
(b) One is greater than another
(c) One is less than another
(d) One is two times another
40. A student travels 8 km north, and then 5 km east. What is then his bearing from his starting point?
(a) 42^{0}
(b) 042°
(c) 052^{0}
(d) 032°
41. In a triangle $\angle A C B$, the ratio $\frac{A B}{C A}$, in fig. 3.13 is called

L

Fig.

(a) Cos of angle C
(b) \sin of angle A
(c) Tangent of angle B (d) All of the above
42. The area of trapezium is given by \qquad
(a) $\frac{1}{2}(a+b) h$
(b) $\frac{1}{2} a b h$
(c) $\frac{1}{2}+b h$
(d) $\frac{1}{2}(a) h$
43. figure 3.14 is \qquad
Figure ${ }^{A} .14$

(a) Not similar
(b) Equal
(c) Different
(d) Similar
44. Figure 3.15 is \qquad

Figure 3.15

(a) Similar
(b) Different
(c) Equal to
(d) Equivalent
45. The unknown side in fig. 3.16 is \qquad

Fig. 3.16^{6}

(a) 5.1 cm
(b) 6.1 cm
(c) 7.2 cm
(d) 6.4 cm
46. In figure 3.17, side $A B$ is corresponds to \qquad side

Figate 3.17

(a) FD
(b) EF
(c) DF
(d) ED
47. In figure 3.17, angle C correspond to angle \qquad
(a) F
(b) E
(c) D
(d) B
48. For triangles to be similar, their corresponding angles need to be \qquad
(a) Different
(b) Adjacent
(c) Similar
(d) Equal
49. The length of $\mathbf{S Q}$ in figure 3.18 is \qquad
Figure 3.18

(a) 1.7 cm
(b) 2.5 cm
(c) 3.6 cm
(d) 7 cm
50. All plane shapes are equal \qquad
(a) Constant
(b) Different
(c) Equal
(d) Non of the above
51. The radius of a circle is 10 cm , calculate its area
(a) $142.2 \mathrm{~cm}^{2}$
(b) $413 \mathrm{~cm}^{2}$
(c) $341.2 \mathrm{~cm}^{2}$
(d) $314.2 \mathrm{~cm}^{2}$
52. Calculate the area of square whose side is 19 cm .
(a) $361 \mathrm{~cm}^{2}$
(b) $316 \mathrm{~cm}^{2}$
(c) $631 \mathrm{~cm}^{2}$
(d) $136 \mathrm{~cm}^{2}$
53. A cuboid is 4 cm long, 7 cm wide, and 10 cm height. A similar cuboid is 25 cm height, calculate its length.
(a) 5 cm
(b) 7 cm
(c) 11 cm
(d) 10 cm
54. If $\operatorname{Sin} x=\frac{3}{5}$, calculate $\cos x$
(a) $\frac{2}{5}$
(b) $\frac{3}{5}$
(c) $\frac{4}{5}$
(d) $\frac{1}{4}$
55. Calculate the missing angle <BAC, in fig. 3.19
Fig.
(a) 60°
(b) 40°
(c) 50°
(d) 30°
56. From a point on level ground 40 cm away, the angle of elevation of the top of a tree is $32 \frac{1}{4} \mathrm{o}$, calculate the height of the tree.
(a) 30 cm
(b) 35 cm
(c) 25 cm
(d) 20 cm

Use fig. 3.20 to answer questions 57 and 58

57. The letter k is

(a) 7.8 m
(b) 6.8 m
(c) 8.7 m
(d) 10 m
58. Angle X^{0} is
(a) 25.6^{0}
(b) 22.6°
(c) 23.5^{0}
(d) 28.2^{0}
59. A plane shape with four equal sides is called: \qquad
(a) Square
(b) Triangle
(c) Trapezium
(d) Rectangle
60. A triangle can be enlarge to another
(a) Square
(b) Rectangle
(c) Triangle
(d) Trapezium

Geometry Performance Test (GPT) Marking Scheme

Q1.	D	Q11.	D	Q21.	A	Q31.	A	Q41.	C	Q51.	D
Q2.	C	Q12.	A	Q22.	D	Q32.	C	Q42.	A	Q52.	A
Q3.	A	Q13.	C	Q23.	A	Q33.	A	Q43.	D	Q53.	D
Q4.	D	Q14.	A	Q24.	C	Q34.	D	Q44.	B	Q54.	C
Q5.	B	Q15.	D	Q25.	A	Q35.	C	Q45.	D	Q55.	D
Q6.	C	Q16.	B	Q26.	D	Q36.	B	Q46.	D	Q56.	C
Q7.	D	Q17.	D	Q27.	B	Q37.	C	Q47.	A	Q57.	A
Q8.	A	Q18.	B	Q28.	C	Q38.	D	Q48.	C	Q58.	B
Q9.	D	Q19.	C	Q29.	D	Q39.	A	Q49.	A	Q59.	A
Q10.	C	Q20.	B	Q30.	A	Q40.	D	Q50	D	Q60	C

Adu, D.B. (2004). Comprehensive Mathematics for Senior Secondary Schools: Sure-Bet for WASSCE, NECO, GCE and JAMB. Shepherdhill Girls High school. A Johnson publishers limited.

Osuagwu, M.D., Anemelu, C. and Onyeozili, I. (2000). New School Mathematics for Senior Secondary Schools. Africana- Feb Publishers Limited.

National Council of Teachers of Mathematics (NCTN).(1989). Curriculum and evaluation Standards For school mathematics. Reston, VA: NCTM

Macrae M.F., Kalejaiye, A.O., Chima Z.I Garba, G.U. and Ademosu M.O. (2016). New General Mathematics for Junior Secondary Schools. Person.

Ministry of Basic and Secondary Education, Sokoto (2016). Basic Education Certificate Examinations.

