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Abstract: The focused of this study is to show the solution of the one-dimensional heat equation using
residue theory. One-dimensional heat equations with an initial and boundary value condition was solved
by method of separation of variable of partial differential equation and transformed to second-order
ordinary differential equation. However residue theory was employed to solve the homogenous
differential equations and orthogonality of sine and cosine of Fourier series. In case one (1) and two (2)
the result obtained using residue theory is the same as the other method of solving ordinary differential
equation and both solutions are trivial. In case three (3) the root of the equation is complex therefore
normal method of ordinary differential equations was apply to obtain the result. Residue theory is time-
consuming than the other method of solving ordinary differential equation but is simpler, efficient and
precise than the other methods. In short, the result of one-dimensional heat equation has numerous
applications in physical problems and more often in science and technology innovations; hence the study
recommended that the method should be applied into multidimensional heat transfer equation to solve
scientific and engineering problems.

Keywords: heat equation, residue theory, separation of variable and boundary condition

1. INTRODUCTION

One- dimensional initial value problem of the heat condition equation is given by

With initial conditions of and the boundary condition ,

and is constant. Where f, h, and g are the prescribe functions of the variable.
One-dimensional heat equations with initial boundary condition is considered for time-dependent, the
problems of heat conduction is continuously being studied, and most of the problems are expressed
with homogeneous boundary condition. Altiparmak (2003)

One- dimensional heat equation is of the form where
the independent variable and is a constant coefficient. Peter (2016)
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2. LITERATURE REVIEW

One dimensional heat equation was solved using the method of separation of variable known as Foss
tools; boundary condition was given by the heat equations and algorithms for the maxima program was
used to solve the heat equation. The result obtained from the analytical solution is the same with that of
maxima program and there are numerous methods for the solution of one-dimensional heat equation
apart from the Foss tools and maxima program (Sudha et al., 2017).

Ito’s and Tanaka’s types’ formula related with X was determined to represent its solution of X as
stochastic convolutions and linear stochastic heat equation with additive noise in one-dimensional heat
equation was solved (Mihai et al., 2006).

A numerical solution of diffusion equation with restrictive pade approximations was studied.
The study revealed that it has an advantage in the exact value at certain r, with high accuracy, and yield
good results. According to the findings, comparative solutions with the other method have stayed made
and the result is stable with the exact solution (Boz et al. 2016).

The finite difference method and finite element were used to solve the numerical solution of
one-dimensional heat equation. The finite difference process does not converge frequently to an exact
solution hence the amount of numerical instability was revealed. Finite element method was found to
be the best method when compared with finite difference method to compute the numerical solutions
(Ahmed et al., 2015).

Lattice Boltzmann method was used to solve radiative transfer equations and nonlinear energy
equations. The effect of various parameters was also studied and the result found was compared to be
consistent (Sagwook et al., 2009).

One-dimensional steady-state and transient phonon Boltzmann transport equation and
COMSOL Multi-physics were successfully solved based on finite element and discrete ordinate
methods for spatial and angular discretizations. The sensitivity study was conducted with various
discretization refinements for different values of the Knudsen number, which is a measure of the
Nano-scale regime. Sufficient refinement for angular discretization is critical in obtaining accurate
solutions of the Boltzmann transport equation (Majchraz et al., 2014).

A numerical analysis of heating tissue by the two-temperature model and procedure of heating
tissue is measured, which preserved as a porous medium and is separated into two part that its vascular
“blood vessel” and extravascular “tissue”, The heat conduction in the domain were measured and
described by the two-temperature model which consisting of the system of two coupled equations.
Assumption leads to the model created by the single partial differential equation were made.  The stage
of numerical computation has revealed that the assumed porosity of the blood and the tissue
temperature differ slightly, and variant heating has a significant effect on the distribution of the
temperature (Ronggui et al., 2005).

Simulation of Nano-scale Multidimensional Transient Heat Conduction Problems Using Ballistic-
Diffusive Equations and Phonon Boltzmann Equation, different boundary conditions was employed to
compare the simulation results with those obtained from the phonon BTE and the Fourier law,  and the
two-dimensional cases are simulated and the results is presented. The transient BTE is solved using the
discrete ordinates method with a two Gauss-Legendre quadratures. Attention has been paid to the
boundary conditions, and the result achieved from BDE is importantly improved than those from the
Fourier law (Jordan, 2018).

Explicit Analytical solution of radiation diffusion equation by the double integrations technique
of the integral-balanced have been creates, the strategy permits approximate closed-form solution to be
created, step modification of the surface temperature and two problems time-dependent boundary
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condition have been solved, and error minimization of the approximate solution has been developed
directly by limitations of the residual function of the governing equations (Suresh et al., 2018).

Analytical and numerical approaches were used in the correlation of the solution of two-
dimensional steady-state heat conduction, the result obtained shows that the finite element are in good
agreement with the analytical values and the solution reveals that it can be successfully used in complex
thermal problems (Yang, 2016).

on the study of three dimensional heat equation, the solution shows that the process is highly
consistent with the true fact and also the simulation is feasible and reliable by using MATLAB, it is reveal
that the model is of universal value in solving the three dimensional heat equations. Hon et al (2005)

The numerical simulation analyses show that, the improved strategy of fourth-order
convergence is effectively reduces the iterative number, and the results of numerical simulation
experiments show that the inverse values match the exact values (Karamanli et al., 2012).

Symmetric smoothed particle hydrodynamics (SSPH) process was used to make the basic
functions to solve 2D homogeneous and non-homogeneous steady-state heat transfer problems.
Investigations are complete with the results obtained by using different weight functions and particle
numbers. The error norms for three sample problems are computed by the use of two different kernel
functions such as the revised Gauss function and revised super Gauss function, and the revised super
Gauss function yields the smallest error norm. It is observed that the SSPH technique yields large errors
for non-homogenous problems (Paulino et al., 2018).

Two applications were associated to prove the accurateness of the proposed formulation; it was
observed that both spatial and time modifications were effective. The errors obtained in cylindrical and
spherical coordinates were low and satisfactory, in both applications established [16].

Most of the cited literature they did not apply the method of Cauchy residue theory in the
solution of one dimensional heat equation, in other to solve problems. But they applied various
methods to solve it.

3. METHODOLOGY

One dimensional Heat Equation
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Where R is constant

Case 1. , and is positive

This is second order ordinary differential equation

Cauchy’s method for solving ordinary differential equations by residue theory was
presented and to find the general solution for linear homogeneous differential equations with
constant coefficients

Cauchy's technique for solving differential equations make use of buildup math was
acquainted and with locate, the general solution for linear homogeneous differential equations
with constant coefficients

(1)

Where are given constant s.

Theorem 1
Consider the differential equations with constant coefficients.

(2)
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with the zeros of the polynomial
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(k   =1, 2,3…n)

Hence

(5)

Since f(z) is analytic. Thus, (4) is indeed a solution of (2), i.e. (4) is a general solution

By the above theorem
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Case 2 if integrate twice then the solution becomes

if since A = 0 and also B = 0,  Again

Therefore solution is trivial

Case 3

Apply Bromwich integral
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Let

Since

Note that

since

4. RESULT
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Solution
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and

Case 1 is positive

By residue theorem
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A = 0, B = 0 which trivial

Case 2. If R = 0

Therefore the solution is trivial

Case 3 if

By ordinary differential Equation the solution will become
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Which is Fourier sine series and we have use orthogonality of the series, that is

Where L = 2, to solve for the individual except for

Problem 2
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Case 1 if , is positive

by residue theory

and since

Case 2

and

But and therefore the solution is trivial

Case 3

02 >= R 0>

0'' 2 =− XX 

( ) xx BeAexX  −+= ( ) BABAX −=∴=+⇒= 000

( ) 00 =+⇒= − BeAeX

0=−⇒ − AeAe

( ) 0,00 >>=− −  eeA

0"0 =⇒= XR

( ) BAxxX += ( ) 000 =⇒= BX ( ) AxxX =

( ) 00 =+= BAX  0=B 0=A

0,02 ><−= R

0" 2 =+ XX 

( ) xBxAxX  sincos += ( ) xBxAxX  cossin' +−=

( ) 000 =⇒= AX

( ) xBxX sin=

( ) 0sincos0 =+⇒=  BAX

( )  sinBX =

0sin =B

( )
2

12 −= n

,3,2,1
2

12 =−= n
n

( ) x
n

BxX nn 




 −=

2

12
sin

mailto:journals@arcnjournals.org


International Journal of Pure & Applied Science Research

journals@arcnjournals.org 12 | P a g e

Problem 3
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and

Case 1

by residue theory we have

Also

Case 2 if

Then and

and

Case 3

and

but      A =0

and

we have

therefore    the solution will now become
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=
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Which we find the exploiting the orthogonality of cosine of cosines

For n is even , n is odd we have Therefore and

5. Conclusion
One-dimensional heat equations with an initial and boundary value condition is solved

by method of separation of variable of partial differential equation and transformed to
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second-order ordinary differential equation at time level and residue theory was
employed to solve the homogenous differential equations and orthogonality of sine and
cosine of Fourier series was used. In case one (1) and two (2) the result obtained using
residue theory is the same as the other method and both solutions are trivial. In case
three (3) the root of the equation is complex therefore normal method of ordinary
differential equations was apply to obtain the result. Residue theory is time-consuming
than the other method but is more simple, efficiency and precisely than the other
method. In short, the result of one-dimensional heat equation has an application in
many physical problems and come frequently in science, technology and innovation. It
has been recommended that the method should be applied in multidimensional heat
transfer equation to solve scientific and engineering problems.

Reference

Ahmed. M and Imen. M. (2015),”Analysis of conduction –Radiation Heat Transfer with
variable thermal conductivity and variable Refractive index: Application of the Lattice
Boltzman Method” international journal of Heat and Technology. Vol.33, No 1,

Altiparmak. K (2003), “semi-discretized heat equation approximated by linear finite elements method
“ international journal of pure and applied mathematics volume 4 no 4, 371-378

Boz, A and Gülsever, F. (2016) “Numerical Solution of the Diffusion Equation with Restrictive
Pade Approximation.” Journal of Applied Mathematics and Physics, 4, 2031-2037.
http://dx.doi.org/10.4236/jamp.2016.411202 Doi: 10.2495/HT140411

Hon Y.C and Wei T. (2005), “the method of fundamental solution for solving
multidimensional inverse heat conduction problems”. CMES, vol.7, no 2 pp.119-132,

Jordan H. (2018), ” THE  HEAT  RADIATION  DIFFUSION  EQUATION  Explicit Analytical
Solutions by Improved Integral-Balance Method” THERMAL SCIENCE: Vol. 22, No. 2, pp.
777-788

Karamanli .A. and Muğan A. (2012),” Solutions of Two-Dimensional Heat Transfer Problems
by Using Symmetric Smoothed Particle Hydrodynamics Method”. Applied &
Computational Mathematics, 1:4 http://dx.doi.org/10.4172/2168-9679.1000112

Majchrzak E.&  Turchan Ł. (2 014), “A numerical analysis of heating tissue using the two-
temperature model” Advanced Computational Methods and Experiments in Heat
Transfer XIII  477- WIT Transactions on Engineering Sciences, Vol 83,  WIT Press
www.witpress.com, ISSN 1743-3533 (on-line)

Mihai G, Tvan N and Samy T. (2006), “Ito’s and Tanaka’s type formula for stochastic heat
equation the linear case”. https: hal .archives-ouvertes.fr/hal-00091290. 5.

mailto:journals@arcnjournals.org
http://dx.doi.org/10.4236/
http://dx.doi.org/10.4172/
www.witpress.com


International Journal of Pure & Applied Science Research

journals@arcnjournals.org 16 | P a g e

Paulino de Assis .L .H and Romao .E.C (2018),” Numerical Simulation of 1D Unsteady Heat
Conduction-Convection in Spherical and Cylindrical Coordinates by Fourth-Order FDM”
engineering, Technology & Applied Science Research, Vol. 8, No. 1, 2389-2392

Peter A. (2016), “solution of one-dimensional heat equation using excel worksheet”.
Imperial journal of interdisciplinary research vol. 2, issue -8,. Issn: 2454-1356.

Ronggui Y., Gang C., Marine L and Yuan T” (2005),Simulation of Nanoscale Multidimensional
Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon
Boltzmann Equation”. Journal of Heat Transfer., Vol. 127 Õ 299

Sangwook S and Ajit K. R. (2009),” Nanoscale Heat Transfer using Phonon Boltzmann
Transport Equation” Excerpt from the Proceedings of the COMSOL Conference  Boston

Sudha T.G, Geetha H.V and Harshini S. (2017),” solution of heat equation by method of
separation of variable using the Foss tools maxima “. International Journal of pure and
applied mathematics. Volume 117 No 12., pp281-288

Suresh Y J and Amith K S J (2018), ”correlation of the solution of two-dimensional steady
state heat conduction by analytical and finite element approach” journal of Engineering
Research and Application issn: 2248-9622, pp13-19

Yang. Y (2106), “Derivations and solutions of a New three-Dimensional Heat Conduction
Model” 6th international on management, Education, information and control

mailto:journals@arcnjournals.org

